Forth 200x Standardisation Committee
Forth 200x Draft 18.1

27" August, 2018

FORTH

STANDARD
200x

Notice: Status of this Document

This is a draft proposed Standard to replace the Forth 2012 standard. As such, this is not a completed
standard. The Forth 200x Standardisation Committee may modify this document during the course of its
work.

Forth 200x / 18.1 CONTENTS

Contents
Contents vi
Foreword e e e e vii
Proposals Process e e e e e e e e e viii
200x Membership e e e xi
1 Introduction 13
L1 Purpose o v o e e e e e e e 13
1.2 SCOPe . o o o e e e e e e e e 13
1.2.1 Inclusions e e e 13
1.2.2 EXClusions e e e e e 13
1.3 Document organization v v v v et e e e e e e e e e e e e e e e 13
1.3.1 Wordsets e e e e 13
1.3.2 0 ANNCXES . & v v v o e e e e e e e e e e e e e e e e e e e 14
1.4 Future direCtions 0 i i i e e e e e e e e e e 14
1.4.1 Newtechnology e 14
1.4.2 Obsolescent features e 14
2 Terms, notation, and references 16
2.1 Definitions of terms e e e e e e e e e 16
2.2 NOtatioN o o o e e e e e e e e 19
22,1 Numericnotation v v i i e e e e e e e e e e e e 19
222 Stack notation e e e e e e e e e e e 19
2.2.3 Parsed-textnotation. e e e 19
224 Glossary notation e 20
225 BNFnotation e e e e e 20
2.3 References. L e e e e e 21
3 Usage requirements 22
3.1 Datatypes . . . oo i e e e 22
3.1.1 Data-typerelationships L 22
3.1.2 CharaCter tyPes . . v v v v v o e 23
3.1.3 Single-cell types 24
314 Cell-pair types . . . v v v v e e e e e e e e e e e e 26
315 SyStemEypes e e e e e e e e e e e e e e e 26
3.2 The implementation environment e e e e e e 27
32,1 Numbers e e e e e e 27
322 Arithmetic e e e e e e e e e e 27
323 Stacks e e e e 28
324 Operatorterminal oL 29
325 MasSSOrage . . . v v v e 29
3.2.6 Environmental queries o e 29
3.2.7 Obsolescent Environmental Queries 30
3.3 The Forthdictionary it e e e e e 30

iii

CONTENTS

Forth 200x / 18.1

10

11

12

13

14

15

33,1 NamMeSPACe . . v v v v v v v e e e e e e e e e e e e e e e e
332 CodesSpace e e e e
333 Dataspace e e e e e e e e e e e e
3.4 The Forth textinterpreter e e
341 Parsing e e e e
3.4.2 Finding definition nameso
343 SemantiCs e e e e
3.4.4 Possible actions on an ambiguous condition L.
345 Compilation L e e e e
Documentation requirements
4.1 System documentation e e e e e e e e e e e e e e e e e
4.1.1 Implementation-defined options
4.1.2 Ambiguous conditionso o
4.1.3 Other system documentationo
4.2 Program documentationo e e e e e e e e
4.2.1 Environmental dependencies e
4.2.2 Other program documentation oot

Compliance and labeling

5.1 Forth-2012 SyStems v v v v e e e e e e e e e e e e e e e e e e e
5.1.1 Systemcompliance Lo e e
5.1.2 Systemlabeling L

5.2 Forth-2012 programs« v v v v i e e e e e e e e e e e e e e e
5.2.1 Programcompliance
5.2.2 Programlabeling

Glossary

6.1 Core words e e

6.2 Coreextension WOords L. e e e e e e

The optional Block word set

The optional Double-Number word set
The Exception word set

The optional Facility word set

The optional File-Access word set

The optional Floating-Point word set

The optional Locals word set

The optional Memory-Allocation word set

The optional Programming-Tools word set

88

94

100

105

116

128

148

154

157

v

Forth 200x / 18.1 CONTENTS

16 The optional Search-Order word set 168
17 The optional String word set 173
18 The optional Extended-Character word set 178
A Rationale 185
Al Introduction e e e e 185
A2 Termsand notation L e e e 185
A3 Usage reqUITEMENTS . . . o v v v v v v e v e e e e e e e e e e e e e e e e e e 186
A4 Documentation reqUIremMents v v v v v bt e e e e e e e e e e e e e 200
A.5 Compliance and labeling e 200
A6 GlOSSATY . . . v o e e e e e e e e e e e e e 201
A7 Theoptional Block wordset 217
A.8 The optional Double-Number wordset 218
A.9 The optional Exceptionwordset 219
A.10 The optional Facility wordset 220
A.11 The optional File-Access word set it 224
A.12 The optional Floating-Point word set 226
A.13 The optional Locals word set i 229
A.14 The optional Memory-Allocation word set 230
A.15 The optional Programming-Tools wordset 230
A.16 The optional Search-Order wordset 234
A.17 The optional String word set e e e 235
A.18 The optional Extended-Character wordset 237
B Bibliography 238
C Compatibility analysis 240
C.1 FIG Forth (circa 1978) e e e e e 240
C.2 Forth79 o e e e 240
C.3 Forth83 e 240
C4 ANS Forth (1994) 241
C.5 ISOForth (1997) e e e e e 241
C.6 Approachofthisstandard L 242
C.7 Differences from Forth94 242
C.8 Additional words L 245
D Portability guide 248
D.1 Introduction o i e e 248
D.2 Hardware peculiarities e e 248
D.3 Number representationo e e e e e e e 250
D.4 Forth system implementationt e e e e e e e 250
DS Summary e e e e e e e e e e 251
E Reference Implementations 252
E.1 Introduction L e 252

CONTENTS

Forth 200x / 18.1

E.6 TheCorewordset. o i v i it et e e e e 252
E.8 The optional Double-Number wordset, 254
E.9 The optional Exception word set e 255
E.10 The optional Facility wordset 256
E.11 The optional File-Accesswordset 256
E.12 The optional Floating-Point word set 258
E.13 The optional Locals word set 258
E.15 The optional Programming-Tools wordset 260
E.16 The optional Search-Order word set vt v i 262
E.17 The optional String word set 263
E.18 The optional Extended-Character wordset 266
F Test Suite 271
F1 Introduction e e e e e e e e 271
F2 TestHarness L o o e e e e 271
F3 CoreTests o o e 279
F6 TheCorewordset. i ittt 284
F.8 The optional Double-Number word set v ii e 316
F9 The optional Exceptionwordset 323
F.10 The optional Facility wordset 324
F.11 The optional File-Access word set i vttt 325
F.12 The optional Floating-Point wordset 329
F.14 The optional Memory-Allocation wordset 332
F.15 The optional Programming-Tools wordset 333
F.16 The optional Search-Order wordset 336
F.17 The optional String word set e 339
F.18 The optional Extended Character wordset 341
G Change Log 343
16.1 Bath Meeting (30 September — 2 October, 2015) 343
17.1 Konstanz Meeting (7-9 September, 2016) 344
18.1 Bad Voslau Meeting (6-8 September, 2017) o o 345
H Alphabetic list of words 348
vi foreword

Forth 200x / 18.1 Foreword

Foreword

Forth is a language for direct communication between human beings and machines. Forth was invented by
Charles Moore to increase programmer productivity without sacrificing machine efficiency. Using natural-
language diction and machine-oriented syntax, Forth provides an economical, productive environment for
interactive compilation and execution of programs. Forth also provides low-level access to computer-
controlled hardware, and the ability to extend the language itself. This extensibility allows the language
to be quickly expanded and adapted to special needs and different hardware systems. Forth provides for
highly interactive program development and testing.

In the interests of transportability of application software written in Forth, standardization efforts began in
the mid-1970s by an international group of users and implementors who adopted the name “Forth Standards
Team”. This effort resulted in the Forth-77 Standard. As the language continued to evolve, an interim
Forth-78 Standard was published by the Forth Standards Team. Following Forth Standards Team meetings
in 1979, the Forth-79 Standard was published in 1980. Major changes were made by the Forth Standards
Team in the Forth-83 Standard, which was published in 1983. The ANS Forth Standard was published in
1994! and was and was adopted as an international standard in 19977

The Forth 200x Standardisation Committee was formed in 2004 to allow the Forth community to contribute
to an updated standard. Their work led to the Forth-2012 Standard?.

The Forth Standards Committee has taken over this work. Changes are proposed and discussed on the
forth200x @yahoogroups.com email list and the www.forth-standard.org web site. Annual public meetings
are held to review and vote on the proposed changes. This document is the result of these meetings first
held on 30 September — 2 October, 2015 (Bath), and subsequently on 7-9 September, 2016 (Konstanz),
and 6-8 September, 2017 (Bad Véslau, Austria) .

TANS X3.215-1994 Information Systems — Programming Language FORTH
2ISO/IEC 15145:1997 Information technology. Programming languages. FORTH
3www.forth-standard.org

foreword vii

edl8

email:forth200x@yahoogroups.com
href://www.forth-standard.org/
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+215-1994[R2011]
https://www.iso.org/standard/26479.html
http://www.forth-standard.org/standard/foreword

Proposals Process Forth 200x / 18.1

Proposals Process

In developing a standard it is necessary for the standards committee to know what the system implementors
and the programmers are already doing in that area, and what they would be willing to do, or wish for.

To that end we have introduced a system of consultation with the Forth community:

a)
b)

)

d)

e)

A proponent of an extension or change to the standard writes a proposal.

The proponent publishes the proposal as an RfD (Request for Discussion) by sending a copy to the
forth200x@yahoogroups . comemail list and to the comp . 1lang . forth usenet news group
where it can be discussed. The maintainers of the www. forth200x.org web site will then place
a copy of the proposal on that web site.

Be warned, this will generate a lot of heated discussion.

In order for the results to be available in time for a standards meeting, an RfD should be published
at least 12 weeks before the next meeting.

If a proposal does not propose extensions or changes to the Forth language, but a rewording of the
current document, there is nothing for a system implementor to implement, or a programmer to use.
In such a case, the proposal should be published as a Request for Comment (RfC). The proposal will
be considered, along with any comments, at the next committee meeting.

The proponent can modify the proposal, taking any comments into consideration. Where comments
have been dismissed, both the comment and the reasons for its dismissal should be given. The revised
proposal is published as a revised RfD/RfC.

Once a proposal has settled down, it is frozen, and submitted to a vote taker, who then publishes
a CfV (Call for Votes) on the proposal. The vote taker will normally be a member of the stand-
ards committee. In the poll, system implementors can state, whether their systems implement the
proposal, or what the chances are that it ever will. Similarly, programmers can state whether they
have used something similar to the proposed extension and whether they would use the proposed
extension once it is standardized. The results of this poll are used by the standards committee when
deciding whether to accept the proposal into the standards document.

In order for the results to be available in time for a standards meeting, the CfV should be started at
least 6 weeks before that meeting.

One to two weeks after publishing the CfV, the vote taker will publish a Current Standings. Note
that the poll will remain open, especially for information on additional systems, and the results will
be updated on the Forth200x web page. The results considered at a standards meeting are those from
four weeks prior to that meeting. If no poll results are available by that deadline, the proposal will
be considered at a later meeting.

A proposal will only be accepted into the new basis document by consensus of those present at a
standards meeting. If you can not attend a meeting, you should ask somebody who is attending to
champion the proposal on your behalf.

Should a contributor consider their comments to have been dismissed without due consideration, they are
encouraged to submit a counter proposal.

viii

process

Forth 200x / 18.1 Proposals Process

Proposals which have passed the poll will be integrated into the basis document in preparation for the
approaching standards committee meeting. Proposals often require some rewording in this process, so the
proponent should work with the editor to integrate the proposal into the document.

A proposal should give a rationale for the proposal, so that system implementors and programmers may
see the relevance of the proposal and why they should adopt (and vote for) it. The proposal should include
the following sections, where appropriate.

Author:
The name of the author(s) of the proposal.

Change Log:
A list of changes to the last published edition on the proposal.

Problem:
This states what problem the proposal addresses.

Solution:
An informal description of the proposed solution to the problem identified by the proposal.

Typical use:
Shows a typical use of the word/feature you propose; this should make the formal wording easier to
understand.

Remarks:
This gives the rationale for specific decisions you have taken in the proposal (often in response to
comments in the RfD phase), or discusses specific issues that have not been decided yet.

Proposal:
This is the formal or normative part of the proposal and should be as well specified as possible.

Some issues could be left undecided in the initial RfDs, leaving the issue open for discussion. These
issues should be mentioned in the Remarks section as well as in the Proposal section.

If you want to leave something open to the system implementor, make that explicit, e.g., by making
it an ambiguous condition.

For the wording of word definitions, it is normally a good idea to take your inspiration from existing
word definitions in the basis document. Where possible you should include the rationale for the
definition. Should a proposal be accepted where no rationale has been provided, the editor will
construct a rationale from other parts of the proposal. The proponent should work with the editor in
the development of this rationale.

Reference implementation:
This makes it easier for system implementors to adopt your proposal. Where possible they should be
provided in standard Forth, as defined by this document. Where this is not possible, system specific
knowledge is required or non standard words are used, this should be documented.

Testing:
This should test the feature/words you propose, in particular, it should test boundary conditions.
Where possible test cases should be written to conform with John Hayes tester. f test harness,
see Appendix F.

process iX

Proposals Process Forth 200x / 18.1

Experience:
Indicate where the proposal has already been implemented and/or used.

Comments:
Initially this is blank. As comments are made on the proposal, they should be incorporated into the
proposal. Comment which can not be incorporated should be included in this section. A response to
the comment may be included after the comment itself.

Instructions for responding to the poll:
Once the proposal enters the CfV stage, the vote taker will add these instructions to the proposal.

X process

Forth 200x / 18.1

200x Membership

200x Membership

This document is maintained by the Forth 200x Standards Committee. The committee meetings are open
to the public, anybody is allowed to attend a physical meeting as an observer.

Committee membership is open to anybody who can attend physical meetings. On attending a physical
meeting, a non-member becomes an observer. An observer becomes a voting member by attending the
next physical meeting. An observer will not normally be allowed to vote except at the discretion of the
committee. A member will be deemed to have resigned from the committee by failing to attend two

consecutive physical meetings.

Electronic meetings of the committee are held between physical meetings as required.

Currently the committee has the following voting members:

Prof. Sergey Baranov
snbaranov@googlemail.com

PaulE.Bennet................ ...,
Paul_E.Bennett@topmail.co.uk

WillemBotha...................................
willem.botha@ccssa.com

Dr. M. Anton Ertl..................
anton@mips.complang.tuwien.at

Andrew Haley............ ...,
aph@redhat.com

Dr. Ulrich Hoffmann.............................
uho@forth—-ev.de

Dr. Peter Knaggs (Editor)
pjk@bcs.org.uk

Howerd Oakford,
howerd@inventio.co.uk

Bernd Paysan (Treasure)co.o...
bernd.paysan@gmx.de

Stephen Pelc (Chair)................ ..ot
stephen@mpeforth.com

LeonWagnerccoviiiiiiiiiiiinnnn...
leon@forth.com

Gerald Wodni (Technical)
gerald@wodni.at

SPIIRAS
St. Petersburg, Russia

Independent Member adte
Exeter, UK

Construction Computer Software (Pty) Ltd
Cape Town, South Africa

Technische Universitit Wien
Wien, Austria

Red Hat UK Ltd.
Cambridge, UK

FH Wedel
Wedel, Germany

Independent Member
Trowbridge, UK

Inventio Software Ltd
Wolfsburg, Germany

Net2o
Munich, Germany

MicroProcessor Engineering Ltd.
Southampton, UK

FORTH, Inc.
Los Angeles, USA

Independent Member
Wien, Austria

The following organizations and individuals have also participated in this project as committee members.
The committee recognizes and respects their contributions:

members-2x

Xi

200x Membership

Forth 200x / 18.1

Federicode Ceballos.........................

federico.ceballos@unican.es

Simon Kaphahn.............................

Simon_K99%@gmx.de

Dr.Bill Stoddart.............................

w.Jj.stoddart@gmail.com

Dr. Willi Strickerooiveit.

stricker_w@t-online.de

Carsten Strotmann....................ouun...

carsten@strotmann.de

Universidad de Cantabria
Santander, Spain

Independent Member
Munich, Germany

Teesside University
Middlesbrough, UK

Independent Member
Springe, Germany

Independent Member
Neuenkirchen, Germany

The committee would like to thank the following contributors:

John Hayes Bruce McFarling Hewerd-Oakford
Marcel Hendrix Charles G. Montgomery Tim Partridge
Gerry Jackson Krishna Myneni Elizabeth Rather
Alex McDonald David N. Williams

Xii

members-2x

Forth 200x / 18.1 1. Introduction

Forth 200x Standard

1 Introduction

1.1 Purpose

The purpose of this standard is to promote the portability of Forth programs for use on a wide variety
of computing systems, to facilitate the communication of programs, programming techniques, and ideas
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.

1.2 Scope

This standard specifies an interface between a Forth System and a Forth Program by defining the words
provided by a Standard System.

1.2.1 Inclusions
This standard specifies:
— the forms that a program written in the Forth language may take;

— the rules for interpreting the meaning of a program and its data.

1.2.2 Exclusions
This standard does not specify:
— the mechanism by which programs are transformed for use on computing systems;
— the operations required for setup and control of the use of programs on computing systems;
— the method of transcription of programs or their input or output data to or from a storage medium;

— the program and Forth system behavior when the rules of this standard fail to establish an interpreta-
tion;

— the size or complexity of a program and its data that will exceed the capacity of any specific
computing system or the capability of a particular Forth system;

— the physical properties of input/output records, files, and units;

— the physical properties and implementation of storage.

1.3 Document organization
1.3.1 Word sets

This standard groups Forth words and capabilities into word sets under a name indicating some shared
aspect, typically their common functional area. Each word set may have an extension, containing words
that offer additional functionality. These words are not required in an implementation of the word set.

intro 13

1. Introduction Forth 200x / 18.1

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a
Standard System. The other word sets, defined in sections 7 through 18, are optional, making it possible to
provide Standard Systems with tailored levels of functionality.

1.3.1.1 Text sections

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces
terms and notation used throughout the standard. There are no requirements in these sections.

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems
and Programs, while section 5 specifies their labeling.

Sections x.1-x.6 of each word set have the same section numbering as sections 1-6 of the whole document
to make it easy to relate the sections to each other. This may lead to gaps in section numbers if a particular
section does not occur in a word set.

1.3.1.2 Glossary sections

Section 6 of each word set specifies the required behavior of the definitions in the word set and the exten-
sions word set.

1.3.2 Annexes
The annexes do not contain any required material.

Annex A provides some of the rationale behind the committee’s decisions in creating this standard, as well
as implementation examples. It has the same section numbering as the body of the standard to make it easy
to relate each requirements section to its rationale section.

Annex B is a short bibliography on Forth.
Annex C discusses the compatibility of this standard with earlier Forths.
Annex D presents some techniques for writing portable programs.

Annex F presents a test suite to test the operation of a system complies with the definitions documented in
this standard.

Annex H is an index of all Forth words defined in this standard.

1.4 Future directions
1.4.1 New technology

This standard adopts certain words and practices that are increasingly found in common practice. New
words have also been adopted to ease creation of portable programs.

1.4.2 Obsolescent features

This standard adopts certain words and practices that cause some previously used words and practices to
become obsolescent. Although retained here because of their widespread use, their use in new implement-
ations or new programs is discouraged, as they may be withdrawn from future revisions of the standard.

This standard designates the following word as obsolescent:

14 intro

Forth 200x / 18.1 1. Introduction

15.6.2.1580 FORGET
6.2.2530 [COMPILE]
13.6.2.1795 LOCALS|

This standard designates the following practice as obsolescent:

— Using ENVIRONMENT? to enquire whether a word set is present.

intro 15

2. Terms, notation, and references Forth 200x / 18.1

2 Terms, notation, and references

The phrase “See:” is used throughout this standard to direct the reader to other sections of the standard that
have a direct bearing on the current section.

In this standard, “shall” states a requirement on a system or program; conversely, “shall not” is a prohi-
bition; “need not” means “is not required to”’; “should” describes a recommendation of the standard; and
“may”, depending on context, means “is allowed to” or “might happen”.

Throughout the standard, typefaces are used in the following manner:

— This proportional serif typeface is used for text, with ifalic used for symbols and the first appearance
of new terms;

— A bold proportional sans-serif typeface is used for headings;

— A bold monospaced serif typeface is used for Forth-language text.

2.1 Definitions of terms

Terms defined in this section are used generally throughout this standard. Additional terms specific to
individual word sets are defined in those word sets. Other terms are defined at their first appearance,
indicated by italic type. Terms not defined in this standard are to be construed according to the Dictionary
for Information Systems, ANSI X3.172-1990.

address unit: Depending on context, either 1) the units into which a Forth address space is divided for the
purposes of locating data objects such as characters and variables; 2) the physical memory storage
elements corresponding to those units; 3) the contents of such a memory storage element; or 4) the
units in which the length of a region of memory is expressed.

aligned: Divisible by a type-dependent power of 2 (typically used as “(type)-aligned address” or
“(type)-aligned value”).

aligned address: The address of a memory location at which a character, cell, cell pair, or double-cell
integer can be accessed.

ambiguous condition: A circumstance for which this standard does not prescribe a specific behavior. See
section 4.1.2 Ambiguous conditions for a list of such circumstances and 3.4.4 Possible actions on
an ambiguous condition.

cell: The primary unit of information in the architecture of a Forth system.
cell pair: Two cells that are treated as a single unit.

character: Depending on context, either 1) a storage unit capable of holding a character; or 2) a member
of a character set.

character-aligned address: The address of a memory location at which a character can be accessed.

character string: Data space that is associated with a sequence of consecutive character-aligned ad-
dresses. Character strings usually contain text. Unless otherwise indicated, the term “string” means
“character string”.

16 notation

Forth 200x / 18.1 2. Terms, notation, and references

code space: The logical area of the dictionary in which word semantics are implemented.
compile: To transform source code into dictionary definitions.

compilation semantics: The behavior of a Forth definition when its name is encountered by the text in-
terpreter in compilation state.

counted string: A data structure consisting of one character containing a length followed by zero or more
contiguous data characters. Normally, counted strings contain text.

cross compiler: A system that compiles a program for later execution in an environment that may be
physically and logically different from the compiling environment. In a cross compiler, the term
“host” applies to the compiling environment, and the term “target” applies to the run-time environ-
ment.

current definition: The definition whose compilation has been started but not yet ended.
data field: The data space associated with a word defined via CREATE.
data space: The logical area of the dictionary that can be accessed.

data-space pointer: The address of the next available data space location, i.e., the value returned by
HERE.

data stack: A stack that may be used for passing parameters between definitions. When there is no
possibility of confusion, the data stack is referred to as “the stack”. Contrast with return stack.

data type: An identifier for the set of values that a data object may have.

defining word: A Forth word that creates a new definition when executed.

definition: A Forth execution procedure compiled into the dictionary.

dictionary: An extensible structure that contains definitions and associated data space.
display: To send one or more characters to the user output device.

environmental dependencies: A program’s implicit assumptions about a Forth system’s implementation
options or underlying hardware. For example, a program that assumes a cell size greater than 16 bits
is said to have an environmental dependency.

execution semantics: The behavior of a Forth definition when it is executed.

execution token: A value that identifies the execution semantics of a definition.

find: To search the dictionary for a definition name matching a given string.

immediate word: A Forth word whose compilation semantics are to perform its execution semantics.

implementation defined: Denotes system behaviors or features that must be provided and documented
by a system but whose further details are not prescribed by this standard.

implementation dependent: Denotes system behaviors or features that must be provided by a system but
whose further details are not prescribed by this standard.

notation 17

2. Terms, notation, and references Forth 200x / 18.1

initiation semantics: Describes the behavior at the start of some word definitions (those of words defined
with :, :NONAME, CREATE DOES>). Other parts of the specification of these defining words (and
nothing else) refer to initiation semantics.

input buffer: A region of memory containing the sequence of characters from the input source that is
currently accessible to a program.

input source: The device, file, block, or other entity that supplies characters to refill the input buffer.

input source specification: A set of information describing a particular state of the input source, input
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the
nesting of parsing operations on the same or different input sources.

interpretation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in interpretation state.

keyboard event: A value received by the system denoting a user action at the user input device. The term
“keyboard” in this document does not exclude other types of user input devices.

line: A sequence of characters followed by an actual or implied line terminator.
name space: The logical area of the dictionary in which definition names are stored.

number: In this standard, “number” used without other qualification means “integer”. Similarly, “double
number” means “double-cell integer”.

parse: To select and exclude a character string from the parse area using a specified set of delimiting
characters, called delimiters.

parse area: The portion of the input buffer that has not yet been parsed, and is thus available to the system
for subsequent processing by the text interpreter and other parsing operations.

pictured-numeric output: A number display format in which the number is converted using Forth words
that resemble a symbolic “picture” of the desired output.

program: A complete specification of execution to achieve a specific function (application task) expressed
in Forth source code form.

receive: To obtain characters from the user input device.

return stack: A stack that may be used for program execution nesting, do-loop execution, temporary
storage, and other purposes.

standard word: A named Forth procedure, formally specified in this standard.

user input device: The input device currently selected as the source of received data, typically a keyboard.
user output device: The output device currently selected as the destination of display data.

variable: A named region of data space located and accessed by its memory address.

word: Depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-space
characters, which could be the name of a Forth definition.

word list: A list of associated Forth definition names that may be examined during a dictionary search.

18 notation

Forth 200x / 18.1 2. Terms, notation, and references

word set: A set of Forth definitions grouped together in this standard under a name indicating some shared
aspect, typically their common functional area.

2.2 Notation

2.2.1 Numeric notation

Unless otherwise stated, all references to numbers apply to signed single-cell integers. The inclusive range
of values is shown as {from ... to}. The allowable range for the contents of an address is shown in double
braces, particularly for the contents of variables, e.g., BASE {{2... 36}}.

2.2.2 Stack notation
Stack parameters input to and output from a definition are described using the notation:
(stack-id: before —— after)

where stack-id specifies which stack is being described, before represents the stack-parameter data types
before execution of the definition and after represents them after execution. The symbols used in before
and after are shown in table 3.1.

The control-flow-stack stack-id is “C:”, the data-stack stack-id is “S:”, and the return-stack stack-id is “R:”.
When there is no confusion, the data-stack stack-id may be omitted.

When there are alternate affer representations, they are described by “after; | after,”. The top of the stack
is to the right. Only those stack items required for or provided by execution of the definition are shown.

2.2.3 Parsed-text notation

If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation
from table 2.1, shown surrounded by double-quotes and placed between the before parameters and the “--”
separator in the first stack described, e.g.,

(S: before “parsed-text-abbreviation” —— after)

Table 2.1: Parsed text abbreviations
Abbreviation Description

(char) the delimiting character marking the end of the string being parsed

(chars) zero or more consecutive occurrences of the character (char)

(space) a delimiting space character

(spaces) zero or more consecutive occurrences of the character (space)

(quote) a delimiting double quote

(paren) a delimiting right parenthesis

(eol) an implied delimiter marking the end of a line

cce a parsed sequence of arbitrary characters, excluding the delimiter character
name a token delimited by space, equivalent to ccc(space) or ccc{eol)

notation 19

2. Terms, notation, and references Forth 200x / 18.1

2.2.4 Glossary notation

The glossary entries for each word set are listed in the standard ASCII collating sequence. Each glossary
entry specifies a Forth word and consists of two parts: an index line and the semantic description of the
definition.

2.24.1 Glossary index line

The index line is a single-line entry containing, from left to right:

Section number, the last four digits of which assign a unique sequential number to all words included
in this standard;

DEFINITION-NAME in upper-case, mono-spaced, bold-face letters;

Natural-language pronunciation in quotes if it differs from English;

Word-set designator from table 2.2. The designation for extensions word sets includes “EXT"”.

Extension designator in sans-serif font under the Word-set designator for words which have been
added to the standard via the named extension.

Table 2.2: Word set designators

Word set Designator
Core word set CORE
Block word set BLOCK
Double-Number word set DOUBLE
Exception word set EXCEPTION
Facility word set FACILITY
File-Access word set FILE
Floating-Point word set FLOATING
Locals word set LOCALS
Memory-Allocation word set MEMORY
Programming-Tools word set TOOLS
Search-Order word set SEARCH
String-Handling word set STRING
Extended-Character word set XCHAR

2.2.4.2 Glossary semantic description

The first paragraph of the semantic description contains a stack notation for each stack affected by execution
of the word. The remaining paragraphs contain a text description of the semantics. See 3.4.3 Semantics.

2.2.5 BNF notation

The following notation is used to define the syntax of some elements within the document:

— Each component of the element is defined with a rule consisting of the name of the component
(italicized in angle-brackets, e.g., (decdigit)), the characters := and a concatenation of tokens and
metacharacters;

20 notation

Forth 200x / 18.1 2. Terms, notation, and references

— Tokens may be literal characters (in bold face, e.g., E) or rule names in angle brackets (e.g.,
(decdigit));

— The metacharacter * is used to specify zero or more occurrences of the preceding token (e.g.,
(decdigit)™);
— Tokens enclosed with [and] are optional (e.g., [-]);
— Vertical bars separate choices from a list of tokens enclosed with braces (e.g., { 011 }).
See: 3.4.1.3 Text interpreter input number conversion, 12.3.7 Text interpreter input number conversion,
12.6.1.0558 >FLOAT, 12.6.2.1613 FS ., 13.6.2.2550 { :.
2.3 References
The following national and international standards are referenced in this standard:

ISO/IEC 15145:1997 Information technology. Programming languages. FORTH,

ANSI X3.215-1994 Programming Languages — Forth;

ANSI X3.172-1990 Dictionary for Information Systems, (2.1 Definitions of terms);

ANSI X3.4-1974 American Standard Code for Information Interchange (ASCII), (3.1.2.1 Graphic
characters);

ISO 646-1983 ISO 7-bit coded characterset for information interchange, International Reference
Version (IRV) (3.1.2.1 Graphic characters);

ANSI/IEEE 754-1985 Floating-point Standard, (12.2.1 Definition of terms).

notation 21

ed18

3. Usage requirements Forth 200x / 18.1

3 Usage requirements

A system shall provide all of the words defined in 6.1 Core words and 9 The Exception word set .
It may also provide any words defined in the optional word sets and extensions word sets. No standard
word provided by a system shall alter the system state in a way that changes the effect of execution of any
other standard word except as provided in this standard. A system may contain non-standard extensions,
provided that they are consistent with the requirements of this standard.

The implementation of a system may use words and techniques outside the scope of this standard.

A system need not provide all words in executable form. The implementation may provide definitions,
including definitions of words in the Core word set, in source form only. If so, the mechanism for adding
the definitions to the dictionary is implementation defined.

A program that requires a system to provide words or techniques not defined in this standard has an envi-
ronmental dependency.

3.1 Data types

A data type identifies the set of permissible values for a data object. It is not a property of a particular
storage location or position on a stack. Moving a data object shall not affect its type.

No data-type checking is required of a system. An ambiguous condition exists if an incorrectly typed data
object is encountered.

Table 3.1 summarizes the data types used throughout this standard. Multiple instances of the same type in
the description of a definition are suffixed with a sequence digit subscript to distinguish them.

3.1.1 Data-type relationships

Some of the data types are subtypes of other data types. A data type i is a subtype of type j if and only if
the members of i are a subset of the members of j. The following list represents the subtype relationships
using the phrase “i = j” to denote “i is a subtype of j”’. The subtype relationship is transitive; if i = j and j
= ktheni=k:

+n = u=x;

+n=n=x;

char = +n;

a-addr = c-addr = addr = u;
flag = x;

Xt = X;

ior = n=-x;

+d = d = xd,

+d = ud = xd.

Any Forth definition that accepts an argument of type i shall also accept an argument that is a subtype of i.

22 usage

Forth 200x / 18.1 3. Usage requirements

Table 3.1: Data types

Symbol Data type Size on stack
flag flag 1 cell
true true flag 1 cell
false false flag 1 cell
char character 1 cell
n signed number 1 cell
+n non-negative number 1 cell
u unsigned number 1 cell
uln! number 1 cell
X unspecified cell 1 cell
xt execution token 1 cell
addr address 1 cell
a-addr aligned address 1 cell
c-addr character-aligned address 1 cell
ior error result 1 cell
d double-cell signed number 2 cells
+d double-cell non-negative number 2 cells
ud double-cell unsigned number 2 cells
d | ud? double-cell number 2 cells
xd unspecified cell pair 2 cells
colon-sys definition compilation implementation dependent
do-sys do-loop structures implementation dependent
case-sys CASE structures implementation dependent
of-sys OF structures implementation dependent
orig control-flow origins implementation dependent
dest control-flow destinations implementation dependent
loop-sys loop-control parameters implementation dependent
nest-sys definition cells implementation dependent
i*x,j*x k*x> any data type 0 or more cells

May be either a signed number or an unsigned number depending on context.

May be either a double-cell signed number or a double-cell unsigned number
depending on context.

May be an undetermined number of stack entries of unspecified type. For examples
of use, see 6.1.1370 EXECUTE, 6.1.2050 QUIT.

3.1.2 Character types
Characters shall have the following properties:

— be exactly one address unit wide;

— contain at least eight bits;

— be of fixed width;

— have a size less than or equal to cell size;
— be unsigned.

usage 23

3. Usage requirements Forth 200x / 18.1

The characters provided by a system shall include the graphic characters {32 ... 126}, which represent
graphic forms as shown in table 3.2.

3.1.2.1 Graphic characters

A graphic character is one that is normally displayed (e.g., A, #, &, 6). These values and graphics, shown
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and ISO 646-1983, International Reference
Version (IRV). The graphic forms of characters outside the hex range {20 ... 7E} are implementation
defined. Programs that use the graphic hex 24 (the currency sign) have an environmental dependency.

The graphic representation of characters is not restricted to particular type fonts or styles. The graphics
here are examples.

Table 3.2: Standard graphic characters

Hex IRV ASCII | Hex IRV ASCII | Hex IRV ASCII | Hex IRV ASCII | Hex IRV ASCII | Hex IRV ASCII
20 30 0 0 0 @ @ S0 P P 60 - 70 p p
21 1 3 1 1 41 A A 51 Q Q 61 a a 71 q q
2 o 2 2 2 42 B B 52 R R 62 b b 7 r or
23 # # 33 3 3 43 Cc C 53 S S 63 ¢ ¢ 3 s s
24 o $ 34 4 4 4 D D 54 T T 63 d d 74t ot
25 % % 35 5 5 45 E E 55 U U 64 e e 75 u u
2% & & 36 6 6 46 F F 56 V.V 65 f f 76 vov
27 0 37 7 7 47 G G 57T W W 6 g g 77w w
28 ((3 8 8 48 H H 58 X X 67 h h 78 x x
29)) 399 9 49 1 1 59 Y Y 68 i i 79y oy
2A * % 3A ¢ 4N T SA 7 Z 69 i 1Az oz
2B+ o+ 3B 4B K K SB[[6A k k 7B { |
2c ., 3C < < 4 L L 5\ \ 6C 1 1 7C
2D - - 3D = = ADM M | 5D |] 6D m m 7D})
2B . . 3B > > 4E N N SE ~ 2 6E n n 7E ~ -~
o0F |/ 3F 2 2 4F O O SF_ _ 6F o o

3.1.2.2 Control characters

All non-graphic characters included in the implementation-defined character set are defined in this standard
as control characters. In particular, the characters {0 ... 31}, which could be included in the implement-
ation-defined character set, are control characters.

Programs that require the ability to send or receive control characters have an environmental dependency.
3.1.2.3 Primitive Character

A primitive character (pchar) is a character with no restrictions on its contents. Unless otherwise stated, a
“character” refers to a primitive character.

3.1.3 Single-cell types

The implementation-defined fixed size of a cell is specified in address units and the corresponding number
of bits. See D.2 Hardware peculiarities.

24 usage

Forth 200x / 18.1 3. Usage requirements

Cells shall be at least one address unit wide and contain at least sixteen bits. The size of a cell shall be an
integral multiple of the size of a character. Data-stack elements, return-stack elements, addresses, execution
tokens, flags, and integers are one cell wide.

3.1.3.1 Flags

Flags may have one of two logical states, true or false. A true flag returned by a standard word shall be a
single-cell value with all bits set. A false flag returned by a standard word shall be a single-cell value with
all bits clear.

3.1.3.2 Integers

The implementation-defined range of signed integers shall include {-32768 ... +32767}. The implement-
ation-defined range of non-negative integers shall include {0 ... 32767}. The implementation-defined
range of unsigned integers shall include {0 ... 65535}.

3.1.3.3 Addresses

An address identifies a location in data space with a size of one address unit, which a program may fetch
from or store into except for the restrictions established in this standard. The size of an address unit
is specified in bits. Each distinct address value identifies exactly one such storage element. See 3.3.3
Data space.

The set of character-aligned addresses, addresses at which a character can be accessed, is an implement-
ation-defined subset of all addresses. Adding the size of a character to a character-aligned address shall
produce another character-aligned address.

The set of aligned addresses is an implementation-defined subset of character-aligned addresses. Adding
the size of a cell to an aligned address shall produce another aligned address.

3.1.3.4 Counted strings

A counted string in memory is identified by the address (c-addr) of its length character.

The length character of a counted string shall contain a binary representation of the number of data
characters, between zero and the implementation-defined maximum length for a counted string. The max-
imum length of a counted string shall be at least 255.

3.1.3.5 Execution tokens
Different definitions may have the same execution token if the definitions are equivalent.
3.1.3.6 Error results

A value of zero indicates that the operation completed successfully; other values are in the range {-4095
... -1} and represent a valid THROW code.

The meanings of values in the range {-255 ... -1} are defined by table 9.1 THROW code assignments.
Values in the range {-4095 ... -256} and their meanings are implementation defined.

A word that returns an ior will not THROW that ior as an exception, but indicates the exception through the
ior. This allows a program to take appropriate actions, which may include throwing the exception.

usage 25

3. Usage requirements Forth 200x / 18.1

3.1.4 Cell-pair types

A cell pair in memory consists of a sequence of two contiguous cells. The cell at the lower address is the
first cell, and its address is used to identify the cell pair. Unless otherwise specified, a cell pair on a stack
consists of the first cell immediately above the second cell.

3.1.4.1 Double-cell integers

On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell
containing the least significant part.

The implementation-defined range of double-cell signed integers shall include {-2147483647 ...
+2147483647}.

The implementation-defined range of double-cell non-negative integers shall include {0 ... 2147483647}.

The implementation-defined range of double-cell unsigned integers shall include {0 ... 4294967295}.
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-cell
unsigned integer with the same value. See 3.2.1.1 Internal number representation.

3.1.4.2 Character strings

A string is specified by a cell pair (c-addr u) representing its starting address and length in characters.

3.1.5 System types
The system data types specify permitted word combinations during compilation and execution.
3.1.5.1 System-compilation types

These data types denote zero or more items on the control-flow stack (see 3.2.3.2). The possible presence
of such items on the data stack means that any items already there shall be unavailable to a program until
the control-flow-stack items are consumed.

The implementation-dependent data generated upon beginning to compile a definition and consumed at its
close is represented by the symbol colon-sys throughout this standard.

The implementation-dependent data generated upon beginning to compile a do-loop structure such as DO
... LOOP and consumed at its close is represented by the symbol do-sys throughout this standard.

The implementation-dependent data generated upon beginning to compile a CASE ... ENDCASE structure
and consumed at its close is represented by the symbol case-sys throughout this standard.

The implementation-dependent data generated upon beginning to compile an OF ... ENDOF structure and
consumed at its close is represented by the symbol of-sys throughout this standard.

The implementation-dependent data generated and consumed by executing the other standard control-flow
words is represented by the symbols orig and dest throughout this standard.

3.1.5.2 System-execution types

These data types denote zero or more items on the return stack. Their possible presence means that any
items already on the return stack shall be unavailable to a program until the system-execution items are
consumed.

26 usage

Forth 200x / 18.1 3. Usage requirements

The implementation-dependent data generated upon beginning to execute a definition and consumed upon
exiting it is represented by the symbol nest-sys throughout this standard.

The implementation-dependent loop-control parameters used to control the execution of do-loops are repre-
sented by the symbol loop-sys throughout this standard. Loop-control parameters shall be available inside
the do-loop for words that use or change these parameters, words such as I, J, LEAVE and UNLOOP.

3.2 The implementation environment

3.2.1 Numbers
3.2.1.1 Internal number representation

This standard requires two’s-complement number representation and arithmetic. Arithmetic zero is repre-
sented as the value of a single cell with all bits clear.

The representation of a number as a compiled literal or in memory is implementation dependent.
3.2.1.2 Digit conversion

Numbers shall be represented externally by using characters from the standard character set. Conversion
between the internal and external forms of a digit shall behave as follows:

The value in BASE is the radix for number conversion. A digit has a value ranging from zero to one less than
the contents of BASE. The digit with the value zero corresponds to the character “0”. This representation
of digits proceeds through the character set to the decimal value nine corresponding to the character “9”.
For digits beginning with the decimal value ten the graphic characters beginning with the character “A” are
used. This correspondence continues up to and including the digit with the decimal value thirty-five which
is represented by the character “Z”. The characters “a” though to “z” should be treated the same as “A”
though “Z”, with “a” having the value ten and “z” the value thirty-five. The conversion of digits outside

this range is implementation defined.
3.2.1.3 Free-field number display

Free-field number display uses the characters described in digit conversion, without leading zeros, in a field
the exact size of the converted string plus a trailing space. If a number is zero, the least significant digit is
not considered a leading zero. If the number is negative, a leading minus sign is displayed.

Number display may use the pictured numeric output string buffer to hold partially converted strings (see
3.3.3.6 Other transient regions).

3.2.2 Arithmetic
3.2.2.1 Integer division

Division produces a quotient g and a remainder r by dividing operand a by operand b. Division operations
return g, r, or both. The identity b X g+ r = a shall hold for all a and b.

When unsigned integers are divided and the remainder is not zero, ¢ is the largest integer less than the true
quotient.

usage 27

3. Usage requirements Forth 200x / 18.1

When signed integers are divided, the remainder is not zero, and a and b have the same sign, ¢ is the largest
integer less than the true quotient. If only one operand is negative, whether ¢ is rounded toward negative
infinity (floored division) or rounded towards zero (symmetric division) is implementation defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and the
quotient is rounded to its arithmetic floor. Symmetric division is integer division in which the remainder
carries the sign of the dividend or is zero and the quotient is the mathematical quotient “rounded towards
zero” or “truncated”. Examples of each are shown in tables 3.3 and 3.4.

In cases where the operands differ in sign and the rounding direction matters, a program shall either include
code generating the desired form of division, not relying on the implementation-defined default result, or
have an environmental dependency on the desired rounding direction.

Table 3.3: Floored Division Example Table 3.4: Symmetric Division Example
Dividend Divisor Remainder Quotient Dividend Divisor Remainder Quotient
10 7 3 1 10 7 3 1
-10 7 4 2 -10 7 -3 -1
10 -7 -4 2 10 -7 3 -1
-10 -7 -3 1 -10 -7 -3 1

3.2.2.2 Other integer operations

In all integer arithmetic operations except division, both overflow and underflow shall be ignored. The
value returned when either overflow or underflow occurs is:

— for unsigned results, the exact result modulo 2"

— for signed results, with the exact result being r, for operations other than division the number x in the
range —2"~! < x < 2"~! that satisfies x congruent r (mod 2").

where 7 is the number of bits in the result.

3.2.3 Stacks

3.2.3.1 Data stack

Objects on the data stack shall be one cell wide.
3.2.3.2 Control-flow stack

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of control-
flow words and the restrictions imposed on data-stack usage during the compilation of control structures.

The elements of the control-flow stack are system-compilation data types.

The control-flow stack may, but need not, physically exist in an implementation. If it does exist, it may be,
but need not be, implemented using the data stack. The format of the control-flow stack is implementation
defined.

28 usage

Forth 200x / 18.1 3. Usage requirements

3.2.3.3 Return stack

Items on the return stack shall consist of one or more cells. A system may use the return stack in an
implementation-dependent manner during the compilation of definitions, during the execution of do-loops,
and for storing run-time nesting information.

A program may use the return stack for temporary storage during the execution of a definition subject to
the following restrictions:

— A program shall not access values on the return stack (using R@, R>, 2R@, 2R> or NR>) that it did
not place there using >R, 2>R or N>R;

A program shall not access from within a do-loop values placed on the return stack before the loop
was entered;

All values placed on the return stack within a do-loop shall be removed before I, J, LOOP, +LOOP,
UNLOOP, or LEAVE is executed;

All values placed on the return stack within a definition shall be removed before the definition is
terminated or before EXIT is executed.

3.2.4 Operator terminal

See 1.2.2 Exclusions.

3.24.1 User input device

The method of selecting the user input device is implementation defined.

The method of indicating the end of an input line of text is implementation defined.
3.2.4.2 User output device

The method of selecting the user output device is implementation defined.

3.2.5 Mass storage

A system need not provide any standard words for accessing mass storage.

3.2.6 Environmental queries

The name spaces for ENVIRONMENT ? and definitions are disjoint. Names of definitions that are the same
as ENVIRONMENT? strings shall not impair the operation of ENVIRONMENT?. Table 3.5 contains the
valid input strings and corresponding returned value for inquiring about the programming environment
with ENVIRONMENT?.

If an environmental query (using ENVIRONMENT ?) returns false (i.e., unknown) in response to a string,
subsequent queries using the same string may return frue. If a query returns true (i.e., known) in response
to a string, subsequent queries with the same string shall also return true. If a query designated as constant
in the above table returns frue and a value in response to a string, subsequent queries with the same string
shall return frue and the same value.

usage 29

3. Usage requirements Forth 200x / 18.1

Table 3.5: Environmental Query Strings

String Value data type Constant? Meaning

/COUNTED-STRING n yes maximum size of a counted string, in
characters

/HOLD n yes size of the pictured numeric output string
buffer, in characters

/PAD n yes size of the scratch area pointed to by PAD, in
characters

ADDRESS-UNIT-BITS n yes size of one address unit, in bits

FLOORED flag yes true if floored division is the default

MAX-CHAR u yes maximum value of any character in the
implementation-defined character set

MAX-D d yes largest usable signed double number

MAX-N n yes largest usable signed integer

MAX-U u yes largest usable unsigned integer

MAX-UD ud yes largest usable unsigned double number

RETURN-STACK-CELLS n yes maximum size of the return stack, in cells

STACK-CELLS n yes maximum size of the data stack, in cells

3.2.7 Obsolescent Environmental Queries
X:wordset-query

This standard designates the practice of using ENVIRONMENT? to inquire whether a given word set is
present as obsolescent. If such a query, as listed in table 3.6, returns true, the word set is present in the
form defined by Forth 94. As these queries will be withdrawn from future revisions of the standard their
use in new programs is discouraged.

See A.3.2.7 Obsolescent Environmental Queries.

3.3 The Forth dictionary

Forth words are organized into a structure called the dictionary. While the form of this structure is not
specified by the standard, it can be described as consisting of three logical parts: a name space, a code
space, and a data space. The logical separation of these parts does not require their physical separation.

A program shall not fetch from or store into locations outside data space. An ambiguous condition exists
if a program addresses name space or code space.

3.3.1 Name space
The relationship between name space and data space is implementation dependent.
3.3.1.1 Word lists

The structure of a word list is implementation dependent. When duplicate names exist in a word list, the
latest-defined duplicate shall be the one found during a search for the name.

30 usage

Forth 200x / 18.1 3. Usage requirements

Table 3.6: Obsolescent Environmental Query Strings

String Value data type Constant? Meaning

CORE flag no true if complete core word set of Forth 94 is present
(i.e., not a subset as defined in 5.1.1)

CORE-EXT flag no true if the core extensions word set of Forth 94 is present

BLOCK flag no Forth 94 block word set present.

BLOCK-EXT flag no Forth 94 block extensions word set present.

DOUBLE flag no Forth 94 double number word set present.

DOUBLE-EXT flag no Forth 94 double number extensions word set present.

EXCEPTION flag no Forth 94 exception word set present.

EXCEPTION-EXT flag no Forth 94 exception extensions word set present.

FACILITY flag no Forth 94 facility word set present.

FACILITY-EXT flag no Forth 94 facility extensions word set present.

FILE flag no Forth 94 file word set present.

FILE-EXT flag no Forth 94 file extensions word set present.

FLOATING flag no Forth 94 floating-point word set present.

FLOATING-EXT flag no Forth 94 floating-point extensions word set present.

LOCALS flag no Forth 94 locals word set present.

LOCALS-EXT flag no Forth 94 locals extensions word set present.

MEMORY-ALLOC flag no Forth 94 memory-allocation word set present.

MEMORY-ALLOC-EXT flag no Forth 94 memory-allocation extensions word set present.

TOOLS flag no Forth 94 programming-tools word set present.

TOOLS-EXT flag no Forth 94 programming-tools extensions word set present.

SEARCH-ORDER flag no Forth 94 search-order word set present.

SEARCH-ORDER-EXT flag no Forth 94 search-order extensions word set present.

STRING flag no Forth 94 string word set present.

STRING-EXT flag no Forth 94 string extensions word set present.

3.3.1.2 Definition names

Definition names shall contain {1 ... 31} characters. A system may allow or prohibit the creation of
definition names containing non-standard characters. A system may allow the creation of definition names
longer than 31 characters. Programs with definition names longer than 31 characters have an environmental

dependency.

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of
a system have an environmental dependency.

A program shall not create definition names containing non-graphic characters.
3.3.2 Code space

The relationship between code space and data space is implementation dependent.

usage 31

3. Usage requirements Forth 200x / 18.1

3.3.3 Data space

Data space is the only logical area of the dictionary for which standard words are provided to allocate
and access regions of memory. These regions are: contiguous regions, variables, text-literal regions, input
buffers, and other transient regions, each of which is described in the following sections. A program may
read from or write into these regions unless otherwise specified.

3.3.3.1 Address alignment

Most addresses are cell aligned (indicated by a-addr) or character aligned (c-addr). ALIGNED, CHAR+,
and arithmetic operations can alter the alignment state of an address on the stack. CHAR+ applied to an
aligned address returns a character-aligned address that can only be used to access characters. Applying
CHAR+ to a character-aligned address produces the succeeding character-aligned address. Adding or
subtracting an arbitrary number to an address can produce an unaligned address that shall not be used
to fetch or store anything. The only way to find the next aligned address is with ALIGNED. An ambiguous
condition exists when memory is accessed using an address that is not aligned according to the requirements
for the accessed type.

The definitions of 6.1.1000 CREATE and 6.1.2410 VARTABLE require that the definitions created by them
return aligned addresses.

After definitions are compiled or the word ALIGN is executed the data-space pointer is guaranteed to be
aligned.

3.3.3.2 Contiguous regions

A system guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-comma),
and ALIGN shall be contiguous with the last region allocated with one of the above words, unless the
restrictions in the following paragraphs apply. The data-space pointer HERE always identifies the beginning
of the next data-space region to be allocated. As successive allocations are made, the data-space pointer
increases. A program may perform address arithmetic within contiguously allocated regions. The last
region of data space allocated using the above operators may be released by allocating a corresponding
negatively-sized region using ALLOT, subject to the restrictions of the following paragraphs.

CREATE establishes the beginning of a contiguous region of data space, whose starting address is returned
by the CREATEd definition. This region is terminated by compiling the next definition.

Since an implementation is free to allocate data space for use by code, the above operators need not
produce contiguous regions of data space if definitions are added to or removed from the dictionary between
allocations. An ambiguous condition exists if deallocated memory contains definitions.

3.3.3.3 Variables

The region allocated for a variable may be non-contiguous with regions subsequently allocated with
, (comma) or ALLOT. For example, in:

VARIABLE X | CELLS ALLOT
the region X and the region ALLOTted could be non-contiguous.

Some system-provided variables, such as STATE, are restricted to read-only access.

32 usage

Forth 200x / 18.1 3. Usage requirements

3.3.3.4 Text-literal regions
The text-literal regions, specified by strings compiled with S", S\ " and C" may be read-only.

A program shall not store into the text-literal regions created by S", S\" and C" nor into any read-only
system variable or read-only transient regions.

A system must provide at least two transient buffers for use with C", S" and S\ " strings. These buffers
shall be no less than 80 characters in length. The system should be able to store two strings defined by
sequential use of these words. RAM-limited systems may have environmental restrictions on the number
of buffers and their lifetimes.

3.3.3.5 Input buffers

The address, length, and content of the input buffer may be transient. A program shall not write into the
input buffer. In the absence of any optional word sets providing alternative input sources, the input buffer
is either the terminal-input buffer, used by QUIT to hold one line from the user input device, or a buffer
specified by EVALUATE. In all cases, SOURCE returns the beginning address and length in characters of
the current input buffer.

The minimum size of the terminal-input buffer shall be 80 characters.

The address and length returned by SOURCE, the string returned by PARSE, and directly computed input-
buffer addresses are valid only until the text interpreter does I/O to refill the input buffer or the input source
is changed.

A program may modify the size of the parse area by changing the contents of >IN within the limits imposed
by this standard. For example, if the contents of >IN are saved before a parsing operation and restored
afterwards, the text that was parsed will be available again for subsequent parsing operations. The extent of
permissible repositioning using this method depends on the input source (see 7.3.2 Block buffer regions
and 11.3.3 Input source).

A program may directly examine the input buffer using its address and length as returned by SOURCE; the
beginning of the parse area within the input buffer is indexed by the number in >IN. The values are valid
for a limited time. An ambiguous condition exists if a program modifies the contents of the input buffer.

3.3.3.6 Other transient regions

The data space regions identified by PAD, WORD, and #> (the pictured numeric output string buffer) may
be transient. Their addresses and contents may become invalid after:

— adefinition is created via a defining word;
— definitions are compiled with : or : NONAME;
— data space is allocated using ALLOT, , (comma), C, (c-comma), or ALIGN.

The previous contents of the regions identified by WORD and #> may be invalid after each use of these
words. Further, the regions returned by WORD and #> may overlap in memory. Consequently, use of one
of these words can corrupt a region returned earlier by a different word. The other words that construct
pictured numeric output strings (<#, #, #S, HOLD, HOLDS, XHOLD) may also modify the contents of
these regions. Words that display numbers may be implemented using pictured numeric output words.
Consequently, . (dot), .R, .S, ?,D.,D.R, U., U.R could also corrupt the regions.

usage 33

edl8

edl8

3. Usage requirements Forth 200x / 18.1

The size of the scratch area whose address is returned by PAD shall be at least 84 characters. The contents
of the region addressed by PAD are intended to be under the complete control of the user: no words defined
in this standard place anything in the region, although changing data-space allocations as described in
3.3.3.2 Contiguous regions may change the address returned by PAD. Non-standard words provided by an
implementation may use PAD, but such use shall be documented.

The size of the region identified by WORD shall be at least 33 characters.

The size of the pictured numeric output string buffer shall be at least (2 x n) 4 2 characters, where n is the
number of bits in a cell. Programs that consider it a fixed area with unchanging access parameters have an
environmental dependency.

3.4 The Forth text interpreter

Upon start-up, a system shall be able to interpret, as described by 6.1.2050 QUIT, Forth source code
received interactively from a user input device.

Such interactive systems usually furnish a “prompt” indicating that they have accepted a user request and
acted on it. The implementation-defined Forth prompt should contain the word “OK” in some combination
of upper or lower case.

Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall repeat the following steps until
either the parse area is empty or an ambiguous condition exists:

a) Skip leading spaces and parse a name (see 3.4.1);
b) Search the dictionary name space (see 3.4.2). If a definition name matching the string is found:

1) if interpreting, perform the interpretation semantics of the definition (see 3.4.3.2), and continue
at a).

2) if compiling, perform the compilation semantics of the definition (see 3.4.3.3), and continue at

a).

c¢) If a definition name matching the string is not found, attempt to convert the string to a number (see
3.4.1.3). If successful:

1) if interpreting, place the number on the data stack, and continue at a);

2) if compiling, compile code that when executed will place the number on the stack (see 6.1.1780
LITERAL), and continue at a);

d) If unsuccessful, an-ambignous—ecendition-exists{see3-4-4)- throw an -13 (undefined word) exception.

3.4.1 Parsing

Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined
maximum length of a counted string.

If the parse area is empty, i.e., when the number in >IN is equal to the length of the input buffer, or contains
no characters other than delimiters, the selected string is empty. Otherwise, the selected string begins with
the next character in the parse area, which is the character indexed by the contents of >IN. Anr-ambigueus

34 usage

Forth 200x / 18.1 3. Usage requirements

condition-existsif-the numberin>IN-isgreater-than-thesize-of the-input-buffer- If the number in >IN is

greater than the size of the input buffer a -18 (parsed string overflow) exception is thrown.

If delimiter characters are present in the parse area after the beginning of the selected string, the string
continues up to and including the character just before the first such delimiter, and the number in >IN is
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter
from the parse area. Otherwise, the string continues up to and including the last character in the parse area,
and the number in >IN is changed to the length of the input buffer, thus emptying the parse area.

Parsing may change the contents of >IN, but shall not affect the contents of the input buffer. Specifically, if
the value in >IN is saved before starting the parse, resetting >IN to that value immediately after the parse
shall restore the parse area without loss of data.

3.4.1.1 Delimiters

If the delimiter is the space character, hex 20 (BL), control characters may be treated as delimiters. The
set of conditions, if any, under which a “space” delimiter matches control characters is implementation
defined.

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before parsing.
3.4.1.2 Syntax

Forth has a simple, operator-ordered syntax. The phrase A B C returns values as if A were executed
first, then B and finally C. Words that cause deviations from this linear flow of control are called control-
flow words. Combinations of control-flow words whose stack effects are compatible form control-flow
structures. Examples of typical use are given for each control-flow word in Annex A.

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones.
This standard does not require a syntax or program-construct checker.

3.4.1.3 Text interpreter input number conversion

When converting input numbers, the text interpreter shall recognize integer numbers in the form (anynum).

(anynum) = { (BASEnum) | (decnum) | (hexnum) | (binnum) | (cnum) }
(BASEnum) = [-1{bdigit){bdigit)*

(decnumy := #[-1(decdigit) (decdigit)*

(hexnum) := $[-1(hexdigit) (hexdigit)*

(binnum) = %|-]<blndlgl[> (bindigit)*

(cnum) :=(cha

(bindigit) = { 01 1 }

(decdigit) ={0111213141516171819}

(hexdigit) = { (decdigitylalblcldlelfIAIBICIDIEIF}

(bdigit) represents a digit according to the value of BASE (see 3.2.1.2 Digit conversion). For (hexdigit),
the digits a. .. f have the values 10...15. {char) represents any printable character.

The radix used for number conversion is:

usage 35

edl8

3. Usage requirements Forth 200x / 18.1

(BASEnum) the value in BASE

(decnum) 10

(hexnum) 16

(binnum) 2

(cnum) the number is the value of (char)

See 2.2.5 BNF notation.

3.4.2 Finding definition names

A string matches a definition name if each character in the string matches the corresponding character in
the string used as the definition name when the definition was created. The case sensitivity (whether or not
the upper-case letters match the lower-case letters) is implementation defined. A system may be either case
sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive, ignoring
differences in case while searching.

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such
as accented international characters is implementation defined.

A system shall be capable of finding the definition names defined by this standard when they are spelled
with upper-case letters.

3.4.3 Semantics

The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens
or other representations. They are largely specified by the stack notation in the glossary entries, which
shows what values shall be consumed and produced. The prose in each glossary entry further specifies the
definition’s behavior.

Each Forth definition may have several behaviors, described in the following sections. The terms “initiation
semantics” and “run-time semantics” refer to definition fragments, and have meaning only within the
individual glossary entries where they appear.

3.4.3.1 Execution semantics

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary
entry. When a definition has only one specified behavior, the label is omitted.

Execution may occur implicitly, when the definition into which it has been compiled is executed, or
explicitly, when its execution token is passed to EXECUTE. The execution semantics of a syntactically
correct definition under conditions other than those specified in this standard are implementation depend-
ent.

Glossary entries for defining words include the execution semantics for the new definition in a “name
Execution:” section.

3.4.3.2 Interpretation semantics

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation semantics
of a Forth definition are its execution semantics.

36 usage

Forth 200x / 18.1 3. Usage requirements

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word
set and any definitions included from the optional word sets or word set extensions whose interpretation
semantics are defined by this standard.

A system shall be capable of executing, in interpretation state, any new definitions created in accordance
with 3 Usage requirements.

3.4.3.3 Compilation semantics

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics
of a Forth definition shall be to append its execution semantics to the execution semantics of the current
definition.

3.4.4 Possible actions on an ambiguous condition
When an ambiguous condition exists, a system may take one or more of the following actions:
— ignore and continue;
— display a message;
— execute a particular word;
— set interpretation state and begin text interpretation;
— take other implementation-defined actions;
— take implementation-dependent actions.

The response to a particular ambiguous condition need not be the same under all circumstances.

3.4.5 Compilation
A program shall not attempt to nest compilation of definitions.

During the compilation of the current definition, a program shall not execute any defining word, : NONAME,
or any definition that allocates dictionary data space. The compilation of the current definition may be
suspended using [(left-bracket) and resumed using] (right-bracket). While the compilation of the current
definition is suspended, a program shall not execute any defining word, : NONAME, or any definition that
allocates dictionary data space.

usage 37

4. Documentation requirements Forth 200x / 18.1

4 Documentation requirements

When it is impossible or infeasible for a system or program to define a particular behavior itself, it is
permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why
this is so.

4.1 System documentation

4.1.1 Implementation-defined options

The implementation-defined items in the following list represent characteristics and choices left to the
discretion of the implementor, provided that the requirements of this standard are met. A system shall
document the values for, or behaviors of, each item.

— aligned address requirements 3.1.3.3 Addresses;

— behavior of 6.1.1320 EMIT for non-graphic characters;

— character editing of 6.1.0695 ACCEPT;

— character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY);

— character-aligned address requirements (3.1.3.3 Addresses);

— character-set-extensions matching characteristics (3.4.2 Finding definition names);

— conditions under which control characters match a space delimiter (3.4.1.1 Delimiters);
— format of the control-flow stack (3.2.3.2 Control-flow stack);

— conversion of digits larger than thirty-five (3.2.1.2 Digit conversion);

— display after input terminates in 6.1.0695 ACCEPT;

— exception abort sequence (as in 6.1.0680 ABORT");

— input line terminator (3.2.4.1 User input device);

— maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD);
— maximum size of a parsed string (3.4.1 Parsing);

— maximum size of a definition name, in characters (3.3.1.2 Definition names);

— maximum string length for 6.1.1345 ENVIRONMENT ?, in characters;

— method of selecting 3.2.4.1 User input device;

— method of selecting 3.2.4.2 User output device;

— methods of dictionary compilation (3.3 The Forth dictionary);

— number of bits in one address unit (3.1.3.3 Addresses);

— number representation and arithmetic (3.2.1.1 Internal number representation);

38 doc

Forth 200x / 18.1 4. Documentation requirements

ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types);
read-only data-space regions (3.3.3 Data space);

size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions);

size of one cell in address units (3.1.3 Single-cell types);

size of one character in address units (3.1.2 Character types);

number of string buffers provided (3.3.3.4 Text-literal regions); cdis

size of string buffer used by 3.3.3.4 Text-literal regions;

size of the keyboard terminal input buffer (3.3.3.5 Input buffers);
size of the pictured numeric output string buffer (3.3.3.6 Other transient regions);

size of the scratch area whose address is returned by 6.2.2000 PAD
(3.3.3.6 Other transient regions);

system case-sensitivity characteristics (3.4.2 Finding definition names);
system prompt (3.3 The Forth dictionary, 6.1.2050 QUIT);

type of division rounding (3.2.2.1 Integer division, 6.1.0100 ~/, 6.1.0110 x/MOD, 6.1.0230 /,
6.1.0240 /MOD, 6.1.1890 MOD);

values of 6.1.2250 STATE when true;

whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

4.1.2 Ambiguous conditions

A system shall document the system action taken upon each of the general or specific ambiguous conditions
identified in this standard. See 3.4.4 Possible actions on an ambiguous condition.

The following general ambiguous conditions could occur because of a combination of factors:

a name is neither a valid definition name nor a valid number during text interpretation (3.4 The Forth
text interpreter);

a definition name exceeded the maximum length allowed (3.3.1.2 Definition names);
addressing a region not listed in 3.3.3 Data space;

argument type incompatible with specified input parameter, e.g., passing a flag to a word expecting
an n (3.1 Data types);

attempting to obtain the execution token, (e.g., with 6.1.0070 ”, 6.1.1550 FIND, etc. of a definition
with undefined interpretation semantics;

dividing by zero (6.1.0100 «/, 6.1.0110 «/MOD, 6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD,
6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M~ /);

insufficient data-stack space or return-stack space (stack overflow);

insufficient space for loop-control parameters;

doc

39

4. Documentation requirements Forth 200x / 18.1

insufficient space in the dictionary;
interpreting a word with undefined interpretation semantics;

modifying the contents of the input buffer or a string literal (3.3.3.4 Text-literal regions, 3.3.3.5
Input buffers);

overflow of a pictured numeric output string;
parsed string overflow;

producing a result out of range, e.g., multiplication (using *) results in a value too big to be re-
presented by a single-cell integer (6.1.0090 «, 6.1.0100 ~/, 6.1.0110 «/MOD, 6.1.0570 >NUMBER,
6.1.1561 ¥FM/MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 Mx /);

reading from an empty data stack or return stack (stack underflow);

unexpected end of input buffer, resulting in an attempt to use a zero-length string as a name.

The following specific ambiguous conditions are noted in the glossary entries of the relevant words:

>IN greater than size of input buffer (3.4.1 Parsing);

6.1.2120 RECURSE appears after 6.1.1250 DOES>;

argument input source different than current input source for 6.2.2148 RESTORE-INPUT;
data space containing definitions is de-allocated (3.3.3.2 Contiguous regions);

data space read/write with incorrect alignment (3.3.3.1 Address alignment);

data-space pointer not properly aligned (6.1.0150 , , 6.1.0860 C,);

less than u+2 stack items (6.2.2030 PICK, 6.2.2150 ROLL);

loop-control parameters not available (6.1.0140 +L.OOP, 6.1.1680 I, 6.1.1730 J, 6.1.1760 LEAVE,
6.1.1800 1.00P, 6.1.2380 UNLOOP);

most recent definition does not have a name (6.1.1710 IMMEDIATE);

6.2.2295 TO not followed directly by a name defined by a word with “TO name runtime” semantics
(6.2.2405 VALUE and 13.6.1.0086 (LOCAL));

name not found 6.1.0070 ’, 6.1.2033 POSTPONE, 6.1.2510 [’], 6.2.2530 [COMPILE]);
parameters are not of the same type 6.1.1240 DO, 6.2.0620 ?DO, 6.2.2440 WITHIN);

6.1.2033 POSTPONE, 6.2.2530 [COMPILE], 6.1.0070 ’ or 6.1.2510 [’] applied to 6.2.2295 TO;
string longer than a counted string returned by 6.1.2450 WORD;

u greater than or equal to the number of bits in a cell (6.1.1805 LSHIFT, 6.1.2162 RSHIFT);
word not defined via 6.1.1000 CREATE (6.1.0550 >BODY, 6.1.1250 DOES>);

words improperly used outside 6.1.0490 <# and 6.1.0040 #> (6.1.0030 #, 6.1.0050 #s, 6.1.1670
HOLD, 6.2.1675 HOLDS, 6.1.2210 STIGN);

access to a deferred word, a word defined by 6.2.1173 DEFER, which has yet to be assigned to an xt;

40

doc

Forth 200x / 18.1 4. Documentation requirements

access to a deferred word, a word defined by 6.2.1173 DEFER, which was not defined by 6.2.1173
DEFER;

6.1.2033 POSTPONE, 6.2.2530 [COMPILE], 6.1.2510 [’] or 6.1.0070 ’ applied to 6.2.0698
ACTION-OF or 6.2.1725 IS;

\x is not followed by two hexadecimal characters (6.2.2266 S\ ");

a\is placed before any character, other than those defined in 6.2.2266 S\ ".

4.1.3 Other system documentation
A system shall provide the following information:
— list of non-standard words using 6.2.2000 PAD (3.3.3.6 Other transient regions);

— operator’s terminal facilities available;

program data space available, in address units;

return stack space available, in cells;

stack space available, in cells;

system dictionary space required, in address units.

4.2 Program documentation

4.2.1 Environmental dependencies

A program shall document the following environmental dependencies, where they apply, and should docu-
ment other known environmental dependencies:

— considering the pictured numeric output string buffer a fixed area with unchanging access parameters
(3.3.3.6 Other transient regions);

— depending on the presence or absence of non-graphic characters in a received string (6.1.0695
ACCEPT);

— relying on a particular rounding direction (3.2.2.1 Integer division);

— requiring a particular number representation and arithmetic
(3.2.1.1 Internal number representation);

— requiring non-standard words or techniques (3 Usage requirements);

— requiring the ability to send or receive control characters (3.1.2.2 Control characters, 6.1.1750
KEY);

— using control characters to perform specific functions 6.1.1320 EMIT, 6.1.2310 TYPE);
— using flags as arithmetic operands (3.1.3.1 Flags);

— using lower case for standard definition names or depending on the case sensitivity of a system
(3.3.1.2 Definition names);

doc 41

4. Documentation requirements Forth 200x / 18.1

— using definition names of more than 31 characters in length (3.3.1.2 Definition names);
— using the graphic character with a value of hex 24 (3.1.2.1 Graphic characters).

4.2.2 Other program documentation

A program shall also document:
— minimum operator’s terminal facilities required;

— whether a Standard System exists after the program is loaded.

42 doc

Forth 200x / 18.1 5. Compliance and labeling

5 Compliance and labeling

5.1 Forth-2012 systems

5.1.1 System compliance

A system that complies with all the system requirements given in sections 3 Usage requirements and 4.1
System documentation and their sub-sections is a Standard System. An otherwise Standard System that
provides only a portion of the Core words is a Standard System Subset. An otherwise Standard System
(Subset) that fails to comply with one or more of the minimum values or ranges specified in 3 Usage
requirements and its sub-sections has environmental restrictions.

5.1.2 System labeling

A Standard System (Subset) shall be labeled a “Forth-2012 System (Subset)”. That label, by itself, shall
not be applied to Standard Systems or Standard System Subsets that have environmental restrictions.

The phrase “with Environmental Restrictions” shall be appended to the label of a Standard System (Subset)
that has environmental restrictions.

The phrase “Providing name(s) from the Core Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Core Extensions word set.

The phrase “Providing the Core Extensions word set” shall be appended to the label of any Standard System
that provides all of the Core Extensions word set.

5.2 Forth-2012 programs

5.2.1 Program compliance

A program that complies with all the program requirements given in sections 3 Usage requirements and
4.2 Program documentation and their sub-sections is a Standard Program.

5.2.2 Program labeling

A Standard Program shall be labeled a “Forth-2012 Program™. That label, by itself, shall not be applied
to Standard Programs that require the system to provide standard words outside the Core word set or that
have environmental dependencies.

The phrase “with Environmental Dependencies” shall be appended to the label of Standard Programs that
have environmental dependencies.

The phrase “Requiring name(s) from the Core Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Core Extensions word set.

The phrase “Requiring the Core Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Core Extensions word set.

label 43

6. CORE Word Set Forth 200x / 18.1

6 Glossary

6.1 Core words
6.1.0010 ! “store” CORE

(x a-addr——)
Store x at a-addr.

See: 3.3.3.1 Address alignment.

6.1.0030 # “number-sign” CORE

(ud;—— ud;)

Divide ud; by the number in BASE giving the quotient ud, and the remainder n. (n is the
least significant digit of ud;.) Convert n to external form and add the resulting character
to the beginning of the pictured numeric output string. An ambiguous condition exists if
executes outside of a <# #> delimited number conversion.

See: 6.1.0040 #>, 6.1.0050 #S, 6.1.0490 <#.

6.1.0040 #> “number-sign-greater” CORE

(xd—— c-addru)

Drop xd. Make the pictured numeric output string available as a character string. c-addr
and u specify the resulting character string. A program may replace characters within
the string.

See: 6.1.0030 #, 6.1.0050 #S, 6.1.0490 <#.

6.1.0050 #s “number-sign-s” CORE

(ud; —— ud,)

Convert one digit of ud; according to the rule for #. Continue conversion until the
quotient is zero. ud, is zero. An ambiguous condition exists if #S executes outside
of a <# #> delimited number conversion.

See: 6.1.0030 #, 6.1.0040 #>, 6.1.0490 <#.

44 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0070 ! “tick” CORE

(“(spaces)name” —— xt)

Skip leading space delimiters. Parse name delimited by a space. Find name and return
xt, the execution token for name. An ambiguous condition exists if name is not found.
When interpreting, © xyz EXECUTE is equivalent to xy z.

See: 3.4.3.2 Interpretation semantics, 3.4.1 Parsing, A.6.1.0070 ', A.6.1.2033 POSTPONE,
A.6.1.2510 [’].

6.1.0080 (“paren” CORE

Compilation: Perform the execution semantics given below.
Execution: (“ccc{paren)” ——)
Parse ccc delimited by) (right parenthesis). (is an immediate word.

The number of characters in ccc may be zero to the number of characters in the parse
area.

See: 3.4.1 Parsing, 11.6.1.0080 (, A.6.1.0080 (.

6.1.0090 * “star” CORE

(n1|M]n2|M2—— I’l3|l/t3)

Multiply n; | u; by n, | u, giving the product n3 | u;3.

6.1.0100 */ “star-slash” CORE

(nynyn3—— ny)

Multiply n; by n, producing the intermediate double-cell result d. Divide d by n;
giving the single-cell quotient n,. An ambiguous condition exists if n3 is zero or if
the quotient n, lies outside the range of a signed number. If d and n; differ in sign, the
implementation-defined result returned will be the same as that returned by either the
phrase >R M* R> FM/MOD SWAP DROP or the phrase >R M* R> SM/REM SWAP DROP.

See: 3.2.2.1 Integer division.

6.1.0110 * /MOD “star-slash-mod” CORE

(nynyn3—— nyns)

Multiply n; by n, producing the intermediate double-cell result d. Divide d by n;
producing the single-cell remainder n, and the single-cell quotient ns. An ambiguous
condition exists if nz is zero, or if the quotient ns lies outside the range of a single-cell

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 45

6. CORE Word Set Forth 200x / 18.1

signed integer. If d and n; differ in sign, the implementation-defined result returned will
be the same as that returned by either the phrase >R M* R> FM/MOD or the phrase >R
Mx R> SM/REM.

See: 3.2.2.1 Integer division.

6.1.0120 + “plus” CORE

(n1|u1n2|u2—— l’l3|lzl3)
Add n, | u, to ny | uy, giving the sum n; | uz.

See: 3.3.3.1 Address alignment.

6.1.0130 +! “plus-store” CORE

(nlua-addr——)
Add n | u to the single-cell number at a-addr.

See: 3.3.3.1 Address alignment.

6.1.0140 +LOOP “plus-loop” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: do-sys ——)

Append the run-time semantics given below to the current definition. Resolve the desti-
nation of all unresolved occurrences of LEAVE between the location given by do-sys and
the next location for a transfer of control, to execute the words following +LOOP.

Run-time: (n——) (R:loop-sys; —— |loop-sys;)

An ambiguous condition exists if the loop control parameters are unavailable. Add n
to the loop index. If the loop index did not cross the boundary between the loop limit
minus one and the loop limit, continue execution at the beginning of the loop. Otherwise,
discard the current loop control parameters and continue execution immediately follow-
ing the loop.

See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE, A.6.1.0140 +1.OOP.

46 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0150 , “comma” CORE

(x——)

Reserve one cell of data space and store x in the cell. If the data-space pointer is aligned
when , begins execution, it will remain aligned when , finishes execution. An ambigu-
ous condition exists if the data-space pointer is not aligned prior to execution of , .

See: 3.3.3 Data space, 3.3.3.1 Address alignment, A.6.1.0150 , .

6.1.0160 - “minus”’ CORE

(n]Iu1n2Iu2—— n3|u3)
Subtract n; | u, from n; | u;, giving the difference n; | u;.

See: 3.3.3.1 Address alignment.

6.1.0180 . “dot” CORE

(n——")
Display n in free field format.
See: 3.2.1.2 Digit conversion, 3.2.1.3 Free-field number display.

6.1.0190 " “dot-quote” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc{quote)” ——)

Parse ccc delimited by " (double-quote). Append the run-time semantics given below to
the current definition.

Run-time: (——)
Display ccc.
See: 3.4.1 Parsing, 6.2.0200 . (, A.6.1.0190 . ".

6.1.0230 / “slash” CORE

(nyny;—— n3)

Divide n; by n,, giving the single-cell quotient n;. An ambiguous condition exists if n,
is zero. If n; and n; differ in sign, the implementation-defined result returned will be
the same as that returned by either the phrase >R S>D R> FM/MOD SWAP DROP or the
phrase >R S>D R> SM/REM SWAP DROP.

See: 3.2.2.1 Integer division.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 47

6. CORE Word Set Forth 200x / 18.1

6.1.0240 /MOD “slash-mod” CORE
(nyny;—— n3ny)
Divide n; by n,, giving the single-cell remainder n; and the single-cell quotient n;. An
ambiguous condition exists if n, is zero. If n; and n, differ in sign, the implementation-
defined result returned will be the same as that returned by either the phrase >R S>D R>
FM/MOD or the phrase >R S>D R> SM/REM.

See: 3.2.2.1 Integer division.

6.1.0250 0< “zero-less” CORE
(n—— flag)
flag is true if and only if 7 is less than zero.

6.1.0270 0= “zero-equals” CORE
(x—— flag)
flag is true if and only if x is equal to zero.

6.1.0290 1+ “one-plus” CORE
(nylu;——nyluy)
Add one (1) to n; | u; giving the sum n; | u,.

6.1.0300 1- “one-minus”’ CORE
(nylu;—— nyluy)
Subtract one (1) from n; | u; giving the difference n; | uj.

6.1.0310 2! “two-store” CORE
(x; xp a-addr ——)
Store the cell pair x; x; at a-addr, with x; at a-addr and x; at the next consecutive cell. It
is equivalent to the sequence SWAP OVER ! CELL+ !.

See: 3.3.3.1 Address alignment.
48 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0320 2% “two-star” CORE

(x;——x2)

X, is the result of shifting x; one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.
6.1.0330 2/ “two-slash” CORE

(x7——x2)

X, is the result of shifting x; one bit toward the least-significant bit, leaving the most-
significant bit unchanged.
6.1.0350 2 “two-fetch” CORE

(a-addr —— x; x,)

Fetch the cell pair x; x, stored at a-addr. x; is stored at a-addr and x; at the next
consecutive cell. It is equivalent to the sequence DUP CELL+ @ SWAP Q.

See: 3.3.3.1 Address alignment, 6.1.0310 2! .

6.1.0370 2DROP “two-drop” CORE
(x7x2—=")

Drop cell pair x; x, from the stack.

6.1.0380 2DUP “two-dupe” CORE

(Xpx2——= X7 X% X2)

Duplicate cell pair x; x;.

6.1.0400 20VER “two-over” CORE

(X7 X2 X3 X4 —— X7 X2 X3X4X1X2)

Copy cell pair x; x; to the top of the stack.

6.1.0430 2SWAP “two-swap”’ CORE

(X7 X2 X3 X4 —— X3X4X7X2)

Exchange the top two cell pairs.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 49

X:quotations

6. CORE Word Set Forth 200x / 18.1

6.1.0450

na

Initiation:

me Execution:

See:

6.1.0460 ;

Interpretation:

Compilation:

Run-time:

See:

“colon” CORE

(C: “(spaces)name” —— colon-sys)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, called a “colon definition”. Enter compilation state and start the current defini-
tion, producing colon-sys. Append the initiation semantics given below to the current
definition.

The execution semantics of name will be determined by the words compiled into the
body of the definition. The current definition shall not be findable in the dictionary until
it is ended (or until the execution of DOES> in some systems).

(i*x——i*x) (R: —— nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The
stack effects i *x represent arguments to name.

(i%x——j%*x)

Execute the definition name. The stack effects i *x and j * x represent arguments to and
results from name, respectively.

3.4.3.2 Interpretation semantics, 3.4.1 Parsing, 3.4.5 Compilation, 6.1.1250 DOES>,
6.1.2500 [, 6.1.2540 1, 15.6.2.0470 ; CODE, A.6.1.0450 :.

“semicolon” CORE

Interpretation semantics for this word are undefined.
(C: colon-sys ——)

Append the run-time semantics below to the current definition. End the current defi-
nition, allow it to be found in the dictionary and enter interpretation state, consuming
colon-sys. If the data-space pointer is not aligned, reserve enough data space to align it.

An ambiguous condition exists if the compilation semantics of ; are preformed inside a
quotation ([: ... ;1 block).

(——) (R: nest-sys—)
Return to the calling definition specified by nest-sys.
3.4 The Forth text interpreter, 3.4.5 Compilation, A.6.1.0460 ; .

50

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1

6. CORE Word Set

6.1.0480 < “less-than” CORE
(nyny—— flag)
flag is true if and only if n; is less than n;.
See: 6.1.2340 U<.
6.1.0490 <# “less-number-sign” CORE
(==
Initialize the pictured numeric output conversion process.
See: 6.1.0030 #, 6.1.0040 #>, 6.1.0050 #S.
6.1.0530 = “equals” CORE
(x;x2—— flag)
flag is true if and only if x; is bit-for-bit the same as x,.
6.1.0540 > “greater-than” CORE
(n;ny—— flag)
flag is true if and only if n; is greater than n,.
See: 6.2.2350 U>.
6.1.0550 >BODY “to-body” CORE
(xt—— a-addr)
a-addr is the data-field address corresponding to xz. An ambiguous condition exists if xz
is not for a word defined via CREATE.
See: 3.3.3 Data space, A.6.1.0550 >BODY.
6.1.0560 >IN “to-in” CORE
(—— a-addr)
a-addr is the address of a cell containing the offset in characters from the start of the
input buffer to the start of the parse area.
core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 51

6. CORE Word Set Forth 200x / 18.1

6.1.0570

6.1.0580

>NUMBER “to-number”’ CORE

(ud; c-addr; u; —— ud; c-addr; u,)

ud, is the unsigned result of converting the characters within the string specified by
c-addr; u; into digits, using the number in BASE, and adding each into ud; after multi-
plying ud; by the number in BASE. Conversion continues left-to-right until a character
that is not convertible, including any “+” or “-”, is encountered or the string is entirely
converted. c-addr; is the location of the first unconverted character or the first charac-
ter past the end of the string if the string was entirely converted. u, is the number of
unconverted characters in the string. An ambiguous condition exists if ud, overflows
during the conversion.

See: 3.2.1.2 Digit conversion.

>R “to-r” CORE

Interpretation: Interpretation semantics for this word are undefined.

Execution: (x——) (R: —— x)

6.1.0630

6.1.0650

6.1.0670

Move x to the return stack.

See: 3.2.3.3 Return stack, 6.1.2060 rR>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2RQ.

?DUP “question-dupe” CORE

(x——01xx)

Duplicate x if it is non-zero.

@ “fetch” CORE

(a-addr—- x)
x is the value stored at a-addr.

See: 3.3.3.1 Address alignment.

ABORT CORE

(i*x—) (Rij*x——)

Empty the data stack and perform the function of QUIT, which includes emptying the
return stack, without displaying a message.

See: 9.6.2.0670 ABORT.

52

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0680 ABORT" “abort-quote” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc{quote)” ——)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below
to the current definition.

Run-time: (i*xx;—— | i*x) (R:ij*x—— | j*x)

Remove x; from the stack. If any bit of x; is not zero, display ccc and perform an
implementation-defined abort sequence that includes the function of ABORT.

See: 3.4.1 Parsing, 9.6.2.0680 ABORT", A.6.1.0680 ARORT".

6.1.0690 ABS “abs” CORE

(n——u)

u is the absolute value of n.

6.1.0695 ACCEPT CORE

(c-addr +n; —— +ny)

Receive a string of at most +n,; characters. An ambiguous condition exists if +n; is
zero or greater than 32,767. Display graphic characters as they are received. A program
that depends on the presence or absence of non-graphic characters in the string has an
environmental dependency. The editing functions, if any, that the system performs in
order to construct the string are implementation-defined.

Input terminates when an implementation-defined line terminator is received. When
input terminates, nothing is appended to the string, and the display is maintained in an
implementation-defined way.

+n; is the length of the string stored at c-addr.

See: A.6.1.0695 ACCEPT.

6.1.0705 ALIGN CORE

(=)
If the data-space pointer is not aligned, reserve enough space to align it.

See: 3.3.3 Data space, 3.3.3.1 Address alignment, A.6.1.0705 AL IGN.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 53

6. CORE Word Set Forth 200x / 18.1

6.1.0706 ALIGNED CORE

(addr —— a-addr)
a-addr is the first aligned address greater than or equal to addr.

See: 3.3.3.1 Address alignment, 6.1.0705 AL IGN.
6.1.0710 ALLOT CORE

(n——")

If n is greater than zero, reserve n address units of data space. If n is less than zero,
release | n | address units of data space. If n is zero, leave the data-space pointer
unchanged.

If the data-space pointer is aligned and »n is a multiple of the size of a cell when ALLOT
begins execution, it will remain aligned when ALLOT finishes execution.

If the data-space pointer is character aligned and » is a multiple of the size of a character
when ALLOT begins execution, it will remain character aligned when ALLOT finishes
execution.

See: 3.3.3 Data space.

6.1.0720 AND CORE

(x7x2—— x3)

X3 is the bit-by-bit logical “and” of x; with x;.

6.1.0750 BASE CORE

(—— a-addr)

a-addr is the address of a cell containing the current number-conversion radix {{2...36}}.

6.1.0760 BEGIN CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— dest)

Put the next location for a transfer of control, dest, onto the control flow stack. Append
the run-time semantics given below to the current definition.

Run-time: (——)
Continue execution.

See: 3.2.3.2 Control-flow stack, 6.1.2140 REPEAT, 6.1.2390 UNTIL, 6.1.2430 WHILE,
A.6.1.0760 BEGIN.

54 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0770 BL “b-1” CORE

(—— char)
char is the character value for a space.

See: A.6.1.0770 BL.

6.1.0850 c! “c-store” CORE

(char c-addr ——)

Store char at c-addr. When character size is smaller than cell size, only the number of
low-order bits corresponding to character size are transferred.

See: 3.3.3.1 Address alignment.

6.1.0860 c, “c-comma” CORE

(char——)

Reserve space for one character in the data space and store char in the space. If the data-
space pointer is character aligned when C, begins execution, it will remain character
aligned when C, finishes execution. An ambiguous condition exists if the data-space
pointer is not character-aligned prior to execution of C, .

See: 3.3.3 Data space, 3.3.3.1 Address alignment.

6.1.0870 cae “c-fetch” CORE

(c-addr —— char)

Fetch the character stored at c-addr. When the cell size is greater than character size, the
unused high-order bits are all zeroes.

See: 3.3.3.1 Address alignment.

6.1.0880 CELL+ “cell-plus” CORE

(a-addr; —— a-addr,)
Add the size in address units of a cell to a-addr,, giving a-addr,.

See: 3.3.3.1 Address alignment, A.6.1.0880 CELL+.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 55

6. CORE Word Set Forth 200x / 18.1

6.1.0890 CELLS CORE
(nj—— ny)
n, is the size in address units of n; cells.
See: A.6.1.0880 CELL+, A.6.1.0890 CELLS.
6.1.0895 CHAR “char” CORE
(“(spaces)name” —— char)
Skip leading space delimiters. Parse name delimited by a space. Put the value of its first
character onto the stack.
See: 3.4.1 Parsing, 6.1.2520 [CHAR], A.6.1.0895 CHAR.
6.1.0897 CHAR+ “char-plus” CORE
(c-addr; —— c-addr,)
Add the size in address units of a character to c-addr;, giving c-addr».
See: 3.3.3.1 Address alignment.
6.1.0898 CHARS “chars” CORE
(n;j——nz)
n, is the size in address units of n; characters.
6.1.0950 CONSTANT CORE
(x “(spaces)name” ——)
Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.
name is referred to as a “constant”.
name Execution: (—— x)
Place x on the stack.
See: 3.4.1 Parsing, A.6.1.0950 CONSTANT.
56 P“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.0980 COUNT CORE

(c-addr; —— c-addr; u)

Return the character string specification for the counted string stored at c-addr,. c-addr,
is the address of the first character after c-addr;. u is the contents of the character at
c-addr;, which is the length in characters of the string at c-addr,.

6.1.0990 CR “c-r”’ CORE

(-

Cause subsequent output to appear at the beginning of the next line.

6.1.1000 CREATE CORE

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined below. If the data-space pointer is not
aligned, reserve enough data space to align it. The new data-space pointer defines name’s
data field. CREATE does not allocate data space in name’s data field.

name Execution: (—— a-addr)

a-addr is the address of name’s data field. The execution semantics of name may be
extended by using DOES>.

See: 3.3.3 Data space, 6.1.1250 DOES>, A.6.1.1000 CREATE.

6.1.1170 DECIMAL CORE

(==

Set the numeric conversion radix to ten (decimal).

6.1.1200 DEPTH CORE

(== +n)

+n is the number of single-cell values contained in the data stack before +n was placed
on the stack.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 57

X:quotation

X:quotations

6. CORE Word Set Forth 200x / 18.1

6.1.1240 DO CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— do-sys)
Place do-sys onto the control-flow stack. Append the run-time semantics given below
to the current definition. The semantics are incomplete until resolved by a consumer of
do-sys such as LOOP.
Run-time: (n;lu;nyluy;——) (R: —— loop-sys)
Set up loop control parameters with index n; | u, and limit n; | u;. An ambiguous
condition exists if n; | u; and n; | u, are not both the same type. Anything already on the
return stack becomes unavailable until the loop-control parameters are discarded.
See: 3.2.3.2 Control-flow stack, 6.1.0140 +1.00P, 6.1.1800 1.OOP, A.6.1.1240 DO.
6.1.1250 DOES> “does” CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: colon-sys; —— colon-sys,)
Append the run-time semantics below to the current definition. Whether or not the
current definition is rendered findable in the dictionary by the compilation of DOES>
is implementation defined. Consume colon-sys; and produce colon-sys,. Append the
initiation semantics given below to the current definition.
Run-time: (——) (R: nest-sys; ——)
Replace the execution semantics of the most recent definition, referred to as name, with
the name execution semantics given below. Return control to the calling definition
specified by nest-sys;. An ambiguous condition exists if name was not defined with
CREATE or a user-defined word that calls CREATE.
Initiation: (i *x—— i*xa-addr) (R: —— nest-sys,)

name Execution:

Quotation:

See

Save implementation-dependent information nest-sys, about the calling definition. Place
name’s data field address on the stack. The stack effects i *x represent arguments to
name.

(i%*x——j*x)

Execute the portion of the definition that begins with the initiation semantics appended
by the DOES> which modified name. The stack effects i *x and j * x represent arguments
to and results from name, respectively.

The DOES> part inside a quotation end with the terminating ; J.

: 6.1.1000 CREATE, 15.6.2.0 ;], A.6.1.1250 DOES>.

58

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1

6. CORE Word Set

6.1.1260 DROP CORE

(x——)

Remove x from the stack.

6.1.1290 DUP “dupe” CORE
(x— xx)
Duplicate x.

6.1.1310 ELSE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: orig; —— orig,)
Put the location of a new unresolved forward reference orig, onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics
will be incomplete until orig; is resolved (e.g., by THEN). Resolve the forward reference
orig; using the location following the appended run-time semantics.
Run-time: (——)
Continue execution at the location given by the resolution of orig,.
See: 6.1.1700 IF, 6.1.2270 THEN, A.6.1.1310 ELSE.

6.1.1320 EMIT CORE
(x==")
If x is a graphic character in the implementation-defined character set, display x. The
effect of EMIT for all other values of x is implementation-defined.
When passed a character whose character-defining bits have a value between hex 20
and 7E inclusive, the corresponding standard character, specified by 3.1.2.1 Graphic
characters, is displayed. Because different output devices can respond differently to
control characters, programs that use control characters to perform specific functions
have an environmental dependency. Each EMIT deals with only one character.

See: 6.1.2310 TYPE.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 59

6. CORE Word Set Forth 200x / 18.1

6.1.1345

6.1.1360

6.1.1370

6.1.1380

ENVIRONMENT? “environment-query”’ CORE

(c-addr u—— false | i*xtrue)

c-addr is the address of a character string and u is the string’s character count. u may have
a value in the range from zero to an implementation-defined maximum which shall not be
less than 31. The character string should contain a keyword from 3.2.6 Environmental
queries or the optional word sets to be checked for correspondence with an attribute of
the present environment. If the system treats the attribute as unknown, the returned flag
is false; otherwise, the flag is true and the i *x returned is of the type specified in the
table for the attribute queried.

See: A.6.1.1345 ENVIRONMENT??.

EVALUATE CORE

(i*xc-addru—— j*x)

Save the current input source specification. Store minus-one (-1) in SOURCE-1ID if it
is present. Make the string described by c-addr and u both the input source and input
buffer, set >IN to zero, and interpret. When the parse area is empty, restore the prior
input source specification. Other stack effects are due to the words EVALUATEd.

EXECUTE CORE

(i*xxt—— j*x)

Remove xt from the stack and perform the semantics identified by it. Other stack effects
are due to the word EXECUTEJ.

See: 6.1.0070 ', 6.1.2510 [’].

EXIT CORE

Interpretation: Interpretation semantics for this word are undefined.

Execution: (——) (R:nest-sys——)

Return control to the calling definition specified by nest-sys. Before executing EXIT
within a do-loop, a program shall discard the loop-control parameters by executing
UNLOOP.

See: 3.2.3.3 Return stack, 6.1.2380 UNL.OOP, A.6.1.1380 EXIT.

60

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.1540 FILL CORE

(c-addr u char ——)

If u is greater than zero, store char in each of u consecutive characters of memory
beginning at c-addr.

6.1.1550 FIND CORE

(c-addr —— c-addr 0 | xt1 | xt-1)

Find the definition named in the counted string at c-addr. If the definition is not found,
return c-addr and zero. If the definition is found, return its execution token xz. If the defi-
nition is immediate, also return one (/), otherwise also return minus-one (-7). For a given
string, the values returned by FIND while compiling may differ from those returned
while not compiling.

See: 3.4.2 Finding definition names, A.6.1.0070 ', A.6.1.1550 FIND,
A.6.1.2033 POSTPONE, A.6.1.2510 [’].

6.1.1561 FM/MOD “f-m-slash-mod” CORE

(din;j—— nyn3)

Divide d; by n;, giving the floored quotient n; and the remainder n,. Input and output
stack arguments are signed. An ambiguous condition exists if n; is zero or if the quotient
lies outside the range of a single-cell signed integer.

See: 3.2.2.1 Integer division, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, A.6.1.1561 FM/MOD.

6.1.1650 HERE CORE

(—— addr)
addr is the data-space pointer.

See: 3.3.3.2 Contiguous regions.

6.1.1670 HOLD CORE

(char——)

Add char to the beginning of the pictured numeric output string. An ambiguous condi-
tion exists if HOLD executes outside of a <# #> delimited number conversion.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 61

6. CORE Word Set Forth 200x / 18.1

6.1.1680 I CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— nlu) (R:loop-sys —— loop-sys)

n | u is a copy of the current (innermost) loop index. An ambiguous condition exists if
the loop control parameters are unavailable.

6.1.1700 IF CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved, e.g., by THEN or ELSE.

Run-time: (x——)

If all bits of x are zero, continue execution at the location specified by the resolution of
orig.

See: 3.2.3.2 Control-flow stack, 6.1.1310 ELSE, 6.1.2270 THEN, A.6.1.1700 IF.

6.1.1710 IMMEDIATE CORE

(=)
Make the most recent definition an immediate word. An ambiguous condition exists if
the most recent definition does not have a name or if it was defined as a SYNONYM.

See: 15.6.2.2264 SYNONYM A.6.1.1710 IMMEDIATE.

6.1.1720 INVERT CORE

(x;—= x2)
Invert all bits of x;, giving its logical inverse x,.

See: 6.1.1910 NEGATE, 6.1.0270 0=, A.6.1.1720 INVERT.

62 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.1730 J CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— nlu) (R:loop-sys; loop-sys, —— loop-sys; loop-sys>)

n | u is a copy of the next-outer loop index. An ambiguous condition exists if the loop
control parameters of the next-outer loop, loop-sys;, are unavailable.

See: A.6.1.1730 J.

6.1.1750 KEY CORE

(—— char)

Receive one character char, a member of the implementation-defined character set. Key-
board events that do not correspond to such characters are discarded until a valid charac-
ter is received, and those events are subsequently unavailable.

All standard characters can be received. Characters received by KEY are not displayed.

Any standard character returned by KEY has the numeric value specified in 3.1.2.1
Graphic characters. Programs that require the ability to receive control characters have
an environmental dependency.

See: 10.6.2.1305 EKEY, 10.6.2.1307 EKEY ?, 10.6.1.1755 KEY ?, A.6.1.1750 KEY.

6.1.1760 LEAVE CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (——) (R:loop-sys——)

Discard the current loop control parameters. An ambiguous condition exists if they
are unavailable. Continue execution immediately following the innermost syntactically
enclosing DO. .. LOOP or DO...+LOOP.

See: 3.2.3.3 Return stack, 6.1.0140 +1.00P, 6.1.1800 .OOP, A.6.1.1760 LEAVE.

6.1.1780 LITERAL CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (x——)
Append the run-time semantics given below to the current definition.
Run-time: (—— x)
Place x on the stack.

See: A.6.1.1780 LITERAL.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 63

6. CORE Word Set Forth 200x / 18.1

6.1.1800 LOOP CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: do-sys ——)
Append the run-time semantics given below to the current definition. Resolve the desti-
nation of all unresolved occurrences of LEAVE between the location given by do-sys and
the next location for a transfer of control, to execute the words following the LOOP.
Run-time: (——) (R:loop-sys; —— | loop-sys,)
An ambiguous condition exists if the loop control parameters are unavailable. Add one
to the loop index. If the loop index is then equal to the loop limit, discard the loop
parameters and continue execution immediately following the loop. Otherwise continue
execution at the beginning of the loop.
See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVEA.6.1.1800 LOOP.

6.1.1805 LSHIFT “l-shift” CORE
(xju——x2)
Perform a logical left shift of u bit-places on x;, giving x;. Put zeroes into the least
significant bits vacated by the shift. An ambiguous condition exists if u is greater than
or equal to the number of bits in a cell.

6.1.1810 Mx* “m-star” CORE
(npny——d)
d is the signed product of n; times n,.

See: A.6.1.1810 M.

6.1.1870 MAX CORE
(nyny—— n3)
nz is the greater of n; and n;.

6.1.1880 MIN CORE

(n;ny;—— n3)

n3 is the lesser of n; and n,.

64 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.1890 MOD CORE

(n;ny;—— n3)

Divide n; by n,, giving the single-cell remainder n3. An ambiguous condition exists if n,
is zero. If n; and n, differ in sign, the implementation-defined result returned will be the
same as that returned by either the phrase >R S>D R> FM/MOD DROP or the phrase >R
S>D R> SM/REM DROP.

See: 3.2.2.1 Integer division.

6.1.1900 MOVE CORE

(addr; addr, u —)

If u is greater than zero, copy the contents of u consecutive address units at addr; to the
u consecutive address units at addr,. After MOVE completes, the u consecutive address
units at addr, contain exactly what the u consecutive address units at addr; contained
before the move.

See: 17.6.1.0910 CMOVE, 17.6.1.0920 CMOVE>, A.6.1.1900 MOVE.

6.1.1910 NEGATE CORE

(nj—— ny)
Negate n;, giving its arithmetic inverse n,.

See: 6.1.1720 INVERT, 6.1.0270 0=.

6.1.1980 OR CORE
(x7x2—— x3)

X3 is the bit-by-bit inclusive-or of x; with x;.

6.1.1990 OVER CORE

(xXpx2—— X7 X2%7)

Place a copy of x; on top of the stack.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 65

6. CORE Word Set Forth 200x / 18.1

6.1.2033 POSTPONE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the
compilation semantics of name to the current definition. An ambiguous condition exists
if name is not found.

See: 3.4.1 Parsing, A.6.1.2033 POSTPONE.

6.1.2050 QUIT CORE
(==) (Rii*x——)

Empty the return stack, store zero in SOURCE—-1ID if it is present, make the user input
device the input source, and enter interpretation state. Do not display a message. Repeat
the following:

— Accept a line from the input source into the input buffer, set >IN to zero, and
interpret.

— Display the implementation-defined system prompt if in interpretation state, all
processing has been completed, and no ambiguous condition exists.

See: 3.4 The Forth text interpreter.

6.1.2060 R> “r-from” CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— x) (Rix——)
Move x from the return stack to the data stack.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2RQ.

6.1.2070 R(@ “r-fetch” CORE

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— x) (Rix—— x)
Copy x from the return stack to the data stack.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2RQ.

66 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.2120 RECURSE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (——)

Append the execution semantics of the current definition to the current definition. An
ambiguous condition exists if RECURSE appears in a definition after DOES>.

If inside a quotation, calls the quotation directly surrounding the RECURSE, not the
containing colon definition.

See: 6.1.1250 DOES>, 6.1.2120 RECURSE, 15.6.2.0 [:, A.6.1.2120 RECURSE.

6.1.2140 REPEAT CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: orig dest ——)

Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest. Resolve the forward reference orig using the location following the
appended run-time semantics.

Run-time: (——)
Continue execution at the location given by dest.

See: 6.1.0760 BEGIN, 6.1.2430 WHILE, A.6.1.2140 REPEAT.

6.1.2160 ROT “rote” CORE

(x7x2x3—— X2 x3x1)

Rotate the top three stack entries.

6.1.2162 RSHIFT “r-shift” CORE

(xju—— x2)

Perform a logical right shift of u bit-places on x;, giving x,. Put zeroes into the most
significant bits vacated by the shift. An ambiguous condition exists if u is greater than
or equal to the number of bits in a cell.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 67

x:quotation;

edl8

6. CORE Word Set Forth 200x / 18.1

6.1.2165

s" “s-quote” CORE

Interpretation: Interpretation-semantiesfor-this-word-are-undefined-

(“ccc{quote)” —— c-addr u)

Parse ccc delimited by " (double quote). Store the resulting string in a transient buffer

c-addr u.

Compilation: (“ccc(quote)” ——)
Parse ccc delimited by " (double-quote). Append the run-time semantics given below to
the current definition.
Run-time: (—— c-addru)
Return c-addr and u describing a string consisting of the characters ccc. A program shall
not alter the returned string.
See: 3.3.3.4 Text-literal regions , 3.4.1 Parsing, 6.2.0855 C", 16121655 6.2.2266
S\", A.6.1.2165 S".
6.1.2170 S>D “s-to-d” CORE
(n——d)
Convert the number # to the double-cell number d with the same numerical value.
6.1.2210 SIGN CORE
(n——")
If n is negative, add a minus sign to the beginning of the pictured numeric output string.
An ambiguous condition exists if SIGN executes outside of a <# #> delimited number
conversion.
6.1.2214 SM/REM “s-m-slash-rem” CORE
(din;—— nyn3)
Divide d; by n;, giving the symmetric quotient n; and the remainder n,. Input and output
stack arguments are signed. An ambiguous condition exists if #; is zero or if the quotient
lies outside the range of a single-cell signed integer.
See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2370 UM/MOD, A.6.1.2214 SM/REM.
68 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.2216 SOURCE CORE

(—— c-addru)
c-addr is the address of, and u is the number of characters in, the input buffer.

See: A.6.1.2216 SOURCE.

6.1.2220 SPACE CORE

(=)

Display one space.

6.1.2230 SPACES CORE

(n——")

If n is greater than zero, display n spaces.

6.1.2250 STATE CORE

(—— a-addr)

a-addr is the address of a cell containing the compilation-state flag. STATE is true
when in compilation state, false otherwise. The frue value in STATE is non-zero, but is
otherwise implementation-defined. Only the following standard words alter the value in
STATE: : (colon), ; (semicolon), ABORT, QUIT, : NONAME, [(left-bracket),] (right-
bracket).

Note: A program shall not directly alter the contents of STATE.

See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ; 6.1.0670 ABORT, 6.1.2050
QUIT, 6.1.2500 [, 6.1.2540], 6.2.0455 :NONAME, 15.6.2.2250 STATE, A.6.1.2250
STATE.

6.1.2260 SWAP CORE

(x7x2—— x2x1)

Exchange the top two stack items.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 69

6. CORE Word Set Forth 200x / 18.1

6.1.2270 THEN CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: orig——)

Append the run-time semantics given below to the current definition. Resolve the for-
ward reference orig using the location of the appended run-time semantics.

Run-time: (——)
Continue execution.

See: 6.1.1310 ELSE, 6.1.1700 IF, A.6.1.2270 THEN.

6.1.2310 TYPE CORE

(c-addru—-)
If u is greater than zero, display the character string specified by c-addr and u.

When passed a character in a character string whose character-defining bits have a value
between hex 20 and 7E inclusive, the corresponding standard character, specified by
3.1.2.1 Graphic characters, is displayed. Because different output devices can respond
differently to control characters, programs that use control characters to perform specific
functions have an environmental dependency.

See: 6.1.1320 EMIT.

6.1.2320 U. “u-dot” CORE

(u==")
Display u in free field format.

6.1.2340 U< “u-less-than” CORE

(ujuy—— flag)
flag is true if and only if u; is less than uj.

See: 6.1.0480 <.

6.1.2360 UM»* “u-m-star” CORE

(ujuy—— ud)

Multiply u; by u,, giving the unsigned double-cell product ud. All values and arithmetic
are unsigned.

70 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1

6. CORE Word Set

6.1.2370 UM/MOD “u-m-slash-mod” CORE

(udu;—— upuz)

Divide ud by u,;, giving the quotient u; and the remainder u,. All values and arithmetic
are unsigned. An ambiguous condition exists if u; is zero or if the quotient lies outside
the range of a single-cell unsigned integer.

See: 3.2.2.1 Integer division, 6.1.1561 F/MOD, 6.1.2214 SM/REM.
6.1.2380 UNLOOP CORE
Interpretation: Interpretation semantics for this word are undefined.
Execution: (——) (R:loop-sys——)
Discard the loop-control parameters for the current nesting level. An UNLOOP is required
for each nesting level before the definition may be EXITed. An ambiguous condition
exists if the loop-control parameters are unavailable.
See: 3.2.3.3 Return stack, A.6.1.2380 UNLOOP.
6.1.2390 UNTIL CORE
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: dest ——)
Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest.
Run-time: (x——)
If all bits of x are zero, continue execution at the location specified by dest.
See: 6.1.0760 BEGIN, A.6.1.2390 UNTIL.
6.1.2410 VARIABLE CORE

name Execution:

See:

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve one cell of data space at an
aligned address.

name is referred to as a “variable”.
(—— a-addr)

a-addr is the address of the reserved cell. A program is responsible for initializing the
contents of the reserved cell.

3.4.1 Parsing, A.6.1.2410 VARTABLE.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 71

6. CORE Word Set Forth 200x / 18.1

6.1.2430 WHILE CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: dest —— orig dest)

Put the location of a new unresolved forward reference orig onto the control flow stack,
under the existing dest. Append the run-time semantics given below to the current defi-
nition. The semantics are incomplete until orig and dest are resolved (e.g., by REPEAT).

Run-time: (x——)

If all bits of x are zero, continue execution at the location specified by the resolution of
orig.

See: A.6.1.2430 WHILE.

6.1.2450 WORD CORE

(char “(chars)ccc(char)” —— c-addr)

Skip leading delimiters. Parse characters ccc delimited by char. An ambiguous condition
exists if the length of the parsed string is greater than the implementation-defined length
of a counted string.

c-addr is the address of a transient region containing the parsed word as a counted string.
If the parse area was empty or contained no characters other than the delimiter, the
resulting string has a zero length. A program may replace characters within the string.

See: 3.3.3.6 Other transient regions, 3.4.1 Parsing, A.6.1.2450 WORD.

6.1.2490 XOR “x-or” CORE

(x7x—— x3)

X3 is the bit-by-bit exclusive-or of x; with x;.

6.1.2500 [“left-bracket” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: Perform the execution semantics given below.
Execution: (——)
Enter interpretation state. [is an immediate word.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2540], A.6.1.2500 .

72 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.1.2510 ['1 “bracket-tick” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the
run-time semantics given below to the current definition.

An ambiguous condition exists if name is not found.
Run-time: (—— xt)

Place name’s execution token xt on the stack. The execution token returned by the
compiled phrase “[’] X” is the same value returned by “’ X outside of compilation
state.

See: 3.4.1 Parsing, 6.1.1550 FIND, A.6.1.0070 * A.6.1.2033 POSTPONE,
A.6.1.2510 [].

6.1.2520 [CHAR] “bracket-char” CORE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (—— char)
Place char, the value of the first character of name, on the stack.

See: 3.4.1 Parsing, 6.1.0895 CHAR, A.6.1.2520 [CHAR].

6.1.2540] “right-bracket” CORE

(-
Enter compilation state.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2500 [, A.6.1.2540].

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 73

6. CORE Word Set Forth 200x / 18.1

6.2 Core extension words
6.2.0200 - “dot-paren” CORE EXT
Compilation: Perform the execution semantics given below.
Execution: (“ccc{paren)” ——)

Parse and display ccc delimited by) (right parenthesis). . (is an immediate word.

See: 3.4.1 Parsing, 6.1.0190 . ", A.6.2.0200 . (.

6.2.0210 .R “dot-r” CORE EXT

(npny——)

Display n; right aligned in a field n, characters wide. If the number of characters required
to display n; is greater than n,, all digits are displayed with no leading spaces in a field
as wide as necessary.

See: A.6.2.0210 .R.

6.2.0260 0<> “zero-not-equals” CORE EXT
(x—~ flag)

flag is true if and only if x is not equal to zero.

6.2.0280 0> “zero-greater” CORE EXT
(n—— flag)

flag is true if and only if n is greater than zero.

6.2.0340 2>R “two-to-r” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.
Execution: (x;x,—) (R: —— x;x5)
Transfer cell pair x; x; to the return stack. Semantically equivalent to SWAP >R >R.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0410 2R >, 6.2.0415
2REQ, A.6.2.0340 2>R.

74 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.0410 2R> “two-r-from” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— x;x) (Rixjx——)
Transfer cell pair x; x, from the return stack. Semantically equivalent to R> R> SWAP.

See: 3.2.3.3 Return stack, 6.1.0580 >R 6.1.2060 R> 6.1.2070 R@ 6.2.0340 2>R, 6.2.0415
2R@, A.6.2.0410 2R>.

6.2.0415 2R@ “two-r-fetch” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (—— x;x) (Rix;x—— x;7x5)

Copy cell pair x; x, from the return stack. Semantically equivalent to R> R> 2DUP >R

>R SWAP.
See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410
2R>.
6.2.0455 : NONAME “colon-no-name” CORE EXT

(C: —— colon-sys) (S: —— xt)

Create an execution token xt, enter compilation state and start the current definition,
producing colon-sys. Append the initiation semantics given below to the current defini-
tion.

The execution semantics of xt will be determined by the words compiled into the body
of the definition. This definition can be executed later by using xt EXECUTE.

If the control-flow stack is implemented using the data stack, colon-sys shall be the
topmost item on the data stack. See 3.2.3.2 Control-flow stack.

Initiation: (i*x—— i*x) (R: —— nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The
stack effects i *x represent arguments to xt.

xt Execution: (i*x—— j*x)

Execute the definition specified by xt. The stack effects i *x and j * x represent arguments
to and results from xt, respectively.

See: A.6.2.0455 : NONAME.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 75

6. CORE Word Set Forth 200x / 18.1

6.2.0500 <> “not-equals” CORE EXT
(x;x2 —— flag)
flag is true if and only if x; is not bit-for-bit the same as x,.

6.2.0620 ?DO “question-do” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— do-sys)
Put do-sys onto the control-flow stack. Append the run-time semantics given below to
the current definition. The semantics are incomplete until resolved by a consumer of
do-sys such as LOOP.
Run-time: (n;lu;nyluy;——) (R: —— loop-sys)
If n; | u; is equal to n, | u,, continue execution at the location given by the consumer of
do-sys. Otherwise set up loop control parameters with index n, | u, and limit n; | u; and
continue executing immediately following ?DO. Anything already on the return stack
becomes unavailable until the loop control parameters are discarded. An ambiguous
condition exists if n; | u; and n, | u, are not both of the same type.
See: 3.2.3.2 Control-flow stack, 6.1.0140 +1.00OP, 6.1.1240 DO, 6.1.1680 I,

6.1.1760 LEAVE, 6.1.1800 LOOP, 6.1.2380 UNLOOP, A.6.2.0620 2DO.

6.2.0698 ACTION-OF CORE EXT

Interpretation: (“(spaces)name” —— xt)
Skip leading spaces and parse name delimited by a space. xt is the execution token
that name is set to execute. An ambiguous condition exists if name was not defined by
DEFER, or if the name has not been set to execute an xt.
Compilation: (“(spaces)name” ——)
Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not
defined by DEFER.
Run-time: (—— xt)
xt is the execution token that name is set to execute. An ambiguous condition exists if
name has not been set to execute an xt.
An ambiguous condition exists if POSTPONE, [COMPILE], [’] or ’ is applied to
ACTION-OF.
See: 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1177 DEFERG, 6.2.1725 IS.
76 P“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.0700 AGAIN CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: dest——)

Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest.

Run-time: (——)

Continue execution at the location specified by dest. If no other control flow words are
used, any program code after AGAIN will not be executed.

See: 6.1.0760 BEGIN, A.6.2.0700 AGAIN.

6.2.0825 BUFFER: “buffer-colon” CORE EXT

(u “(spacesyname” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, with the execution semantics defined below. Reserve u address units at an aligned
address. Contiguity of this region with any other region is undefined.

name Execution: (—— a-addr)

a-addr is the address of the space reserved by BUFFER: when it defined name. The
program is responsible for initializing the contents.

See: A.6.2.0825 BUFFER:.

6.2.0855 c" “c-quote” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc{quote)” ——)

Parse ccc delimited by " (double-quote) and append the run-time semantics given below
to the current definition.

Run-time: (—— c-addr)

Return c-addr, a counted string consisting of the characters ccc. A program shall not
alter the returned string.

See: 3.3.3.4Text-literal regions, 3.4.1 Parsing, 6.1.2165 s", 6.2.2266 S\ ", H:61:2165-5"
A.6.2.0855 C".

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 77

edl8

6. CORE Word Set Forth 200x / 18.1

6.2.0873 CASE CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— case-sys)

Mark the start of the CASE...OF...ENDOF... ENDCASE structure. Append the run-time
semantics given below to the current definition.

Run-time: (——)
Continue execution.

See: 6.2.1342 ENDCASE, 6.2.1343 ENDOF, 6.2.1950 OF, A.6.2.0873 CASE.

6.2.0945 COMPILE, “compile-comma” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (xt——)

Append the execution semantics of the definition represented by xt to the execution
semantics of the current definition.

See: A.6.2.0945 COMPILE, .

6.2.1173 DEFER CORE EXT

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name Execution: (i*x—— j*x)

Execute the xt that name is set to execute. An ambiguous condition exists if name has
not been set to execute an x7.

See: 6.2.0698 ACTION-OF, 6.2.1175 DEFER!, 6.2.1177 DEFERQ@, 6.2.1725 IS.

6.2.1175 DEFER! “defer-store” CORE EXT

(xtz xt;——)

Set the word xt; to execute xt,. An ambiguous condition exists if x¢; is not for a word
defined by DEFER.

See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1177 DEFERQ, 6.2.1725 IS.

78 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.1177 DEFER(@ “defer-fetch” CORE EXT

(xt;—— xtp)

Xxt, is the execution token xt; is set to execute. An ambiguous condition exists if xt; is not
the execution token of a word defined by DEFER, or if x¢; has not been set to execute an
xt.

See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1725 IS.

6.2.1342 ENDCASE “end-case” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: case-sys ——)

Mark the end of the CASE...OF...ENDOF...ENDCASE structure. Use case-sys to re-
solve the entire structure. Append the run-time semantics given below to the current
definition.

Run-time: (x——)
Discard the case selector x and continue execution.

See: 6.2.0873 CASE, 6.2.1343 ENDOF, 6.2.1950 OF, A.6.2.1342 ENDCASE.

6.2.1343 ENDOF “end-of” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: case-sys; of-sys —— case-sys,)

Mark the end of the OF...ENDOF part of the CASE structure. The next location for a
transfer of control resolves the reference given by of-sys. Append the run-time semantics
given below to the current definition. Replace case-sys; with case-sys, on the control-
flow stack, to be resolved by ENDCASE.

Run-time: (——)
Continue execution at the location specified by the consumer of case-sys,.

See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1950 OF, A.6.2.1343 ENDOF..

6.2.1350 ERASE CORE EXT

(addru—-)

If u is greater than zero, clear all bits in each of u consecutive address units of memory
beginning at addr.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 79

6. CORE Word Set Forth 200x / 18.1

6.2.1485 FALSE CORE EXT

(—— false)
Return a false flag.

See: 3.1.3.1 Flags

6.2.1660 HEX CORE EXT

(=)

Set contents of BASE to sixteen.

6.2.1675 HOLDS CORE EXT

(c-addru——)

Adds the string represented by c-addr u to the pictured numeric output string. An
ambiguous condition exists if HOLDS executes outside of a <# #> delimited number
conversion.

See: 6.1.1670 HOLD.

6.2.1725 Is CORE EXT

Interpretation: (xt “(spaces)name” ——)
Skip leading spaces and parse name delimited by a space. Set name to execute xt.
An ambiguous condition exists if name was not defined by DEFER.
Compilation: (“(spaces)name” ——)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not
defined by DEFER.

Run-time: (xt——)
Set name to execute xt.
An ambiguous condition exists if POSTPONE, [COMPILE], [’] or ’ is applied to IS.
See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1177 DEFERQ.

80 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.1850 MARKER CORE EXT

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name Execution: (——)

Restore all dictionary allocation and search order pointers to the state they had just prior
to the definition of name. Remove the definition of name and all subsequent definitions.
Restoration of any structures still existing that could refer to deleted definitions or deal-
located data space is not necessarily provided. No other contextual information such as
numeric base is affected.

See: 3.4.1 Parsing, 15.6.2.1580 FORGET, A.6.2.1850 MARKER.

6.2.1930 NIP CORE EXT

(x7x—— x2)

Drop the first item below the top of stack.

6.2.1950 OF CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— of-sys)

Put of-sys onto the control flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consumer of of-sys
such as ENDOF'.

Run-time: (x;x,—— | x;)

If the two values on the stack are not equal, discard the top value and continue execution
at the location specified by the consumer of of-sys, e.g., following the next ENDOF'.
Otherwise, discard both values and continue execution in line.

See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1343 ENDOF', A.6.2.1950 OF.

6.2.2000 PAD CORE EXT

(—— c-addr)

c-addr is the address of a transient region that can be used to hold data for intermediate
processing.

See: 3.3.3.6 Other transient regions, A.6.2.2000 PAD.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 81

6. CORE Word Set Forth 200x / 18.1

6.2.2008 PARSE CORE EXT
(char “ccc{char)” —— c-addru)
Parse ccc delimited by the delimiter char.
c-addr is the address (within the input buffer) and u is the length of the parsed string. If
the parse area was empty, the resulting string has a zero length.
See: 3.4.1 Parsing, A.6.2.2008 PARSE.
6.2.2020 PARSE-NAME CORE EXT
(“(spaces)name(space)” —— c-addr u)
Skip leading space delimiters. Parse name delimited by a space.
c-addr is the address of the selected string within the input buffer and u is its length in
characters. If the parse area is empty or contains only white space, the resulting string
has length zero.
6.2.2030 PICK CORE EXT
(X XpXgU—— Xy . X7 X9 Xy)
Remove u. Copy the x, to the top of the stack. An ambiguous condition exists if there
are less than u+2 items on the stack before PICK is executed.
See: A.6.2.2030 PICK.
6.2.2125 REFILL CORE EXT
(== flag)
Attempt to fill the input buffer from the input source, returning a true flag if successful.
When the input source is the user input device, attempt to receive input into the terminal
input buffer. If successful, make the result the input buffer, set >IN to zero, and return
true. Receipt of a line containing no characters is considered successful. If there is no
input available from the current input source, return false.
When the input source is a string from EVALUATE, return false and perform no other
action.
See: 7.6.2.2125 REFILL, 11.6.2.2125 REFILL, A.6.2.2125 REFILL.
82 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.2148 RESTORE-INPUT CORE EXT

(x,... x;n—— flag)

Attempt to restore the input source specification to the state described by x; through x,,.
flag is true if the input source specification cannot be so restored.

An ambiguous condition exists if the input source represented by the arguments is not
the same as the current input source.

See: 15.6.2.1908 N>R, 15.6.2.1940 NR>, A.6.2.2182 SAVE-INPUT.

6.2.2150 ROLL CORE EXT

(X Xyop oo XpU—— Xyp oo X0 Xy)

Remove u. Rotate u+1 items on the top of the stack. An ambiguous condition exists if
there are less than u+2 items on the stack before ROLL is executed.

See: A.6.2.2150 ROLL.

6.2.2266 S\" “s-backslash-quote” CORE EXT
Interpretation: Interpretation-semantiesfor-this-word-are-undefined- edis
(“ccc{quote)” —— c-addr u)

Parse ccc delimited by " (double quote) according to the translation rules below. Store
the resulting string in a transient buffer c-addr u.

Compilation: (“ccc{quote)” ——)
Parse ccc delimited by " (double-quote), using the translation rules below. Append the
run-time semantics given below to the current definition.

Translation rules: Characters are processed one at a time and appended to the compiled string. If the char-
acter is a ‘\’ character it is processed by parsing and substituting one or more
characters as follows, where the character after the backslash is case sensitive:

\a BEL (alert, ASCII 7)

\b BS (backspace, ASCII 8)

\e ESC (escape, ASCII 27)

\f FF (form feed, ASCII 12)

\1 LF (line feed, ASCII 10)

\m CR/LF pair (ASCII 13, 10)
\n newline (implementation dependent, e.g., CR/LF, CR, LF, LF/CR)
\g double-quote (ASCII 34)

\r CR (carriage return, ASCII 13)

\t HT (horizontal tab, ASCII 9)

\v VT (vertical tab, ASCII 11)

\z NUL (no character, ASCII 0)

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 83

edl8

6. CORE Word Set Forth 200x / 18.1

\" double-quote (ASCII 34)

\x (hexdigit) (hexdigit)
The resulting character is the conversion of these two hexadecimal
digits. An ambiguous conditions exists if \ x is not followed by two
hexadecimal characters.

\\ backslash itself (ASCII 92)

An ambiguous condition exists if a \ is placed before any character, other than those
defined in here.

Run-time: (—— c-addru)
Return c-addr and u describing a string consisting of the translation of the characters
ccc. A program shall not alter the returned string.

See: 3.3.3.4 Text-literal regions, 3.4.1 Parsing, 6.2.0855 C", 6.1.2165 S", H:61:2165-5
A.6.1.2165 s".

6.2.2182 SAVE-INPUT CORE EXT

(——Xx,... x31n)

x; through x,, describe the current state of the input source specification for later use by
RESTORE-INPUT.

See: 15.6.2.1908 N>R, 15.6.2.1940 NR>, A.6.2.2182 SAVE-INPUT.

6.2.2218 SOURCE-ID “source-i-d” CORE EXT

(——01-1)

Identifies the input source as follows:

SOURCE-ID Input source

-1 String (via EVALUATE)
0 User input device
See: 11.6.1.2218 SOURCE-1ID.
6.2.2295 TO CORE EXT
Interpretation: (i *x “(spaces)name” ——)

Skip leading spaces and parse name delimited by a space. Perform the “TO name run-
time” semantics given in the definition for the defining word of name. An ambiguous
condition exists if name was not defined by a word with “TO name run-time” semantics.

Compilation: (“(spaces)name” ——)

84 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ core

Forth 200x / 18.1 6. CORE Word Set

Skip leading spaces and parse name delimited by a space. Append the “TO name run-
time” semantics given in the definition for the defining word of name to the current
definition. An ambiguous condition exists if name was not defined by a word with “TO
name run-time” semantics.

Note: An ambiguous condition exists if any of POSTPONE, [COMPILE], ' or [’] are applied
to TO.

See: 6.2.2405 VALUE, 8.6.2.0435 2VALUE, 12.6.2.1628 FVALUE, 13.6.1.0086 (LOCAL),
A.6.2.2295 TO.

6.2.2298 TRUE CORE EXT
(—— true)
Return a true flag, a single-cell value with all bits set.
See: 3.1.3.1 Flags, A.6.2.2298 TRUE.
6.2.2300 TUCK CORE EXT
(x7x2—— x2x7%2)
Copy the first (top) stack item below the second stack item.
6.2.2330 U.R “u-dot-r” CORE EXT
(un——)
Display u right aligned in a field n characters wide. If the number of characters required
to display u is greater than n, all digits are displayed with no leading spaces in a field as
wide as necessary.
6.2.2350 U> “u-greater-than” CORE EXT
(ujuy—— flag)
flag is true if and only if u; is greater than u;.
See: 6.1.0540 >.
6.2.2395 UNUSED CORE EXT
(——u)
u is the amount of space remaining in the region addressed by HERE, in address units.
core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 85

6. CORE Word Set Forth 200x / 18.1

6.2.2405 VALUE CORE EXT

(x “(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to x.

name is referred to as a “value”.
name Execution: (—— x)

Place x on the stack. The value of x is that given when name was created, until the phrase
X TO name is executed, causing a new value of x to be assigned to name.

TO name Run-time: (x——)
Assign the value x to name.

See: 3.4.1 Parsing, 6.2.2295 TO, A.6.2.2405 VALUE.

6.2.2440 WITHIN CORE EXT

(nylupnyluyny luz—— flag)

Perform a comparison of a test value n; | u; with a lower limit n;, | u; and an upper limit
n3 | us, returning true if either (n, | u, <nzluzand (ny luy <=n; lu;and n; lu; <nzlus))
or (ny lu, >n3luzand (ny | u, <=n; lu; or ny | u; < nz | uz)) is true, returning false
otherwise. An ambiguous condition exists n; | u;, n, | u,, and n3 | u; are not all the same
type.

See: A.6.2.2440 WITHIN.

6.2.2530 [COMPILE] “bracket-compile” CORE EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Find name. If name
has other than default compilation semantics, append them to the current definition;
otherwise append the execution semantics of name. An ambiguous condition exists if
name is not found.

Note: This word is obsolescent and is included as a concession to existing implementations.

See: 3.4.1 Parsing, A.6.2.2530 [COMPILE].

86 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ core

Forth 200x / 18.1 6. CORE Word Set

6.2.2535 \ “backslash” CORE EXT

Compilation: Perform the execution semantics given below.
Execution: (“ccc{eol)” ——)
Parse and discard the remainder of the parse area. \ is an immediate word.

See: 7.6.2.2535 \, A.6.2.2535 \.

core P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 87

7. BLOCK Word Set Forth 200x / 18.1

7 The optional Block word set

7.1 Introduction

7.2 Additional terms

block: 1024 characters of data on mass storage, designated by a block number.

block buffer: A block-sized region of data space where a block is made temporarily available for use. The
current block buffer is the block buffer most recently accessed by BLOCK, BUFFER, LOAD, LIST,
or THRU.

7.3 Additional usage requirements
7.3.1 Data space

A program may access memory within a valid block buffer.

See: 3.3.3 Data space.
7.3.2 Block buffer regions

The address of a block buffer returned by BLOCK or BUFFER is transient. A call to BLOCK or BUFFER
may render a previously-obtained block-buffer address invalid, as may a call to any word that:

— parses:
— displays characters on the user output device, such as TYPE or EMIT;

— controls the user output device, such as CR or AT-XY;

— receives or tests for the presence of characters from the user input device such as ACCEPT or KEY;
— waits for a condition or event, such as MS or EKEY;

— manages the block buffers, such as FLUSH, SAVE-BUFFERS, or EMPTY-BUFFERS;

— performs any operation on a file or file-name directory that implies I/O, such as REFILL or any word
that returns an ior;

— implicitly performs I/O, such as text interpreter nesting and un-nesting when files are being used
(including un-nesting implied by THROW).

If the input source is a block, these restrictions also apply to the address returned by SOURCE. Block buffers
are uniquely assigned to blocks.

See A.7.3.2 Block buffer regions.

7.3.3 Parsing

The Block word set implements an alternative input source for the text interpreter. When the input source
is a block, BLK shall contain the non-zero block number and the input buffer is the 1024-character buffer
containing that block.

88 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ block

Forth 200x / 18.1 7. BLOCK Word Set

A block is conventionally displayed as 16 lines of 64 characters.

A program may switch the input source to a block by using LOAD or THRU. Input sources may be nested
using LOAD and EVALUATE in any order.

A program may reposition the parse area within a block by manipulating >IN. More extensive repositioning
can be accomplished using SAVE-INPUT and RESTORE—-INPUT.

See: 3.4.1 Parsing.
7.3.4 Possible action on an ambiguous condition
See: 3.4.4 Possible actions on an ambiguous condition.

— A system with the Block word set may set interpretation state and interpret a block.

7.4 Additional documentation requirements
7.4.1 System documentation
7.4.1.1 Implementation-defined options

— the format used for display by 7.6.2.1770 LI ST (if implemented);
— the length of a line affected by 7.6.2.2535 \ (if implemented).

7.4.1.2 Ambiguous conditions

Correct block read was not possible;

I/O exception in block transfer;

Invalid block number (7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1790 LOAD);

A program directly alters the contents of 7.6.1.0790 BLK;
— No current block buffer for 7.6.1.2400 UPDATE.

7.4.1.3 Other system documentation
— any restrictions a multiprogramming system places on the use of buffer addresses;
— the number of blocks available for source text and data.

7.4.2 Program documentation

— the number of blocks required by the program.

7.5 Compliance and labeling

7.5.1 Forth-2012 systems

The phrase ‘“Providing the Block word set” shall be appended to the label of any Standard System that
provides all of the Block word set.

block V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 89

7. BLOCK Word Set Forth 200x / 18.1

The phrase “Providing name(s) from the Block Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Block Extensions word set.

The phrase “Providing the Block Extensions word set” shall be appended to the label of any Standard
System that provides all of the Block and Block Extensions word sets.

7.5.2 Forth-2012 programs

The phrase “Requiring the Block word set” shall be appended to the label of Standard Programs that require
the system to provide the Block word set.

The phrase “Requiring name(s) from the Block Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Block Extensions word set.

The phrase “Requiring the Block Extensions word set” shall be appended to the label of Standard Programs

that require the system to provide all of the Block and Block Extensions word sets.

7.6 Glossary

7.6.1 Block words
7.6.1.0790 BLK “b-1-k” BLOCK

(—— a-addr)

a-addr is the address of a cell containing zero or the number of the mass-storage block
being interpreted. If BLK contains zero, the input source is not a block and can be
identified by SOURCE-1ID, if SOURCE—-ID is available. An ambiguous condition exists
if a program directly alters the contents of BLK.

See: 7.3.2 Block buffer regions.

7.6.1.0800 BLOCK BLOCK

(u—— a-addr)

a-addr is the address of the first character of the block buffer assigned to mass-storage
block u. An ambiguous condition exists if u is not an available block number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned block buffer, transfer
block u from mass storage to an unassigned block buffer. a-addr is the address of that
block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign
a block buffer. If the block in that buffer has been UPDATEJ, transfer the block to mass
storage and transfer block u from mass storage into that buffer. a-addr is the address of
that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current
block buffer and is assigned to u.

90 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ block

Forth 200x / 18.1 7. BLOCK Word Set

7.6.1.0820 BUFFER BLOCK

(u—— a-addr)

a-addr is the address of the first character of the block buffer assigned to block u. The
contents of the block are unspecified. An ambiguous condition exists if u is not an
available block number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned buffer, a-addr is the
address of that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign
a block buffer. If the block in that buffer has been UPDATEJ, transfer the block to mass
storage. a-addr is the address of that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current
block buffer and is assigned to u.

See: 7.6.1.0800 BLOCK.

7.6.1.1360 EVALUATE BLOCK

Extend the semantics of 6.1.1360 EVALUATE to include: Store zero in BLK.

7.6.1.1559 FLUSH BLOCK

(-—-)
Perform the function of SAVE-BUFFERS, then unassign all block buffers.

7.6.1.1790 LOAD BLOCK
(i*xu—— j*x)

Save the current input-source specification. Store u in BLK (thus making block u the
input source and setting the input buffer to encompass its contents), set >IN to zero, and
interpret. When the parse area is exhausted, restore the prior input source specification.
Other stack effects are due to the words LOADed.

An ambiguous condition exists if u is zero or is not a valid block number.

See: 3.4 The Forth text interpreter.

block V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 91

7. BLOCK Word Set Forth 200x / 18.1

7.6.1.2180 SAVE-BUFFERS BLOCK

(==
Transfer the contents of each UPDATEd block buffer to mass storage. Mark all buffers
as unmodified.

7.6.1.2400 UPDATE BLOCK

(==
Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer.

UPDATE does not immediately cause 1/O.

See: 7.6.1.0800 BL.OCK, 7.6.1.0820 BUFFER, 7.6.1.1559 FLUSH,
7.6.1.2180 SAVE-BUFFERS.

7.6.2 Block extension words
7.6.2.1330 EMPTY-BUFFERS BLOCK EXT
(—)

Unassign all block buffers. Do not transfer the contents of any UPDATEd block buffer to
mass storage.

See: 7.6.1.0800 BLOCK.

7.6.2.1770 LIST BLOCK EXT
(u—=")
Display block # in an implementation-defined format. Store u in SCR.

See: 7.6.1.0800 BL.OCK.

7.6.2.2125 REFILL BLOCK EXT
(—— flag)
Extend the execution semantics of 6.2.2125 REF I LL with the following:

When the input source is a block, make the next block the input source and current input
buffer by adding one to the value of BLK and setting >IN to zero. Return true if the new
value of BLK is a valid block number, otherwise false.

See: 6.2.2125 REFILIL, 11.6.2.2125 REFILL.

92 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ block

Forth 200x / 18.1 7. BLOCK Word Set

7.6.2.2190 SCR “s-c-r” BLOCK EXT

(—— a-addr)

a-addr is the address of a cell containing the block number of the block most recently
LISTed.

See: A.7.6.2.2190 SCR.

7.6.2.2280 THRU BLOCK EXT
(i*xuyup—— j*x)

LOAD the mass storage blocks numbered u; through u, in sequence. Other stack effects
are due to the words LOADed.

7.6.2.2535 \ “backslash” BLOCK EXT

Extend the semantics of 6.2.2535 \ to be:
Compilation: Perform the execution semantics given below.
Execution: (“ccc(eol)” ——)

If BLK contains zero, parse and discard the remainder of the parse area; otherwise parse
and discard the portion of the parse area corresponding to the remainder of the current
line. \ is an immediate word.

block V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 93

8. DOUBLE Word Set Forth 200x / 18.1

8 The optional Double-Number word set

8.1 Introduction

Sixteen-bit Forth systems often use double-length numbers. However, many Forths on small embedded
systems do not, and many users of Forth on systems with a cell size of 32 bits or more find that the use of
double-length numbers is much diminished. Therefore, the words that manipulate double-length entities
have been placed in this optional word set.

8.2 Additional terms and notation

None.

8.3 Additional usage requirements

8.3.1 Text interpreter input number conversion

When the text interpreter processes a number, except a {cnum), that is immediately followed by a decimal
point and is not found as a definition name, the text interpreter shall convert it to a double-cell number.

For example, entering DECIMAL 1234 leaves the single-cell number 1234 on the stack, and entering
DECIMAL 1234. leaves the double-cell number 1234 0 on the stack.

See: 3.4.1.3 Text interpreter input number conversion.

8.4 Additional documentation requirements
8.4.1 System documentation
8.4.1.1 Implementation-defined options
— no additional requirements.
8.4.1.2 Ambiguous conditions
— d outside range of n in 8.6.1.1140 D>S.
8.4.1.3 Other system documentation
— no additional requirements.
8.4.2 Program documentation

— no additional requirements.

8.5 Compliance and labeling

8.5.1 Forth-2012 systems

The phrase “Providing the Double-Number word set” shall be appended to the label of any Standard System
that provides all of the Double-Number word set.

94 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ double

Forth 200x / 18.1 8. DOUBLE Word Set

The phrase “Providing name(s) from the Double-Number Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Double-Number Extensions word set.

The phrase “Providing the Double-Number Extensions word set” shall be appended to the label of any
Standard System that provides all of the Double-Number and Double-Number Extensions word sets.

8.5.2 Forth-2012 programs

The phrase “Requiring the Double-Number word set” shall be appended to the label of Standard Programs
that require the system to provide the Double-Number word set.

The phrase “Requiring name(s) from the Double-Number Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Double-Number Extensions
word set.

The phrase “Requiring the Double-Number Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Double-Number and Double-Number Extensions
word sets.

8.6 Glossary

8.6.1 Double-Number words

8.6.1.0360 2CONSTANT “two-constant” DOUBLE
(x; x; “(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name is referred to as a “two-constant”.
name Execution: (—— x;x,)
Place cell pair x; x, on the stack.

See: 3.4.1 Parsing, A.8.6.1.0360 2CONSTANT.

8.6.1.0390 2LITERAL “two-literal” DOUBLE

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (x;x;——)
Append the run-time semantics below to the current definition.
Run-time: (—— x;x,)
Place cell pair x; x, on the stack.

See: A.8.6.1.0390 2LITERAL.

double V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 95

8. DOUBLE Word Set Forth 200x / 18.1

8.6.1.0440 2VARIABLE “two-variable” DOUBLE

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve two consecutive cells of data
space.

name is referred to as a “two-variable”.
name Execution: (—— a-addr)

a-addr is the address of the first (lowest address) cell of two consecutive cells in data
space reserved by 2VARIABLE when it defined name. A program is responsible for
initializing the contents.

See: 3.4.1 Parsing, 6.1.2410 VARIABLE, A.8.6.1.0440 2VARIABLE.

8.6.1.1040 D+ “d-plus” DOUBLE

(d] | ud]dz | udz—— d3 | ud3)
Add d; | ud, to d; | ud,, giving the sum d; | ud;.

8.6.1.1050 D- “d-minus” DOUBLE

(d]'Md]dQ'Mdg—— d3|ud3)

Subtract d, | ud, from d; | ud,, giving the difference d; | ud;.

8.6.1.1060 D. “d-dot” DOUBLE

(d=-)
Display d in free field format.

8.6.1.1070 D.R “d-dot-r” DOUBLE

(dn—-")

Display d right aligned in a field n characters wide. If the number of characters required
to display d is greater than n, all digits are displayed with no leading spaces in a field as
wide as necessary.

See: A.8.6.1.1070 D . R.

96 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ double

Forth 200x / 18.1 8. DOUBLE Word Set

8.6.1.1075 DO< “d-zero-less” DOUBLE
(d—— flag)
flag is true if and only if d is less than zero.

8.6.1.1080 DO= “d-zero-equals” DOUBLE
(xd —— flag)
flag is true if and only if xd is equal to zero.

8.6.1.1090 D2x “d-two-star” DOUBLE
()Cd] -)Cdz)
xd, is the result of shifting xd; one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.

8.6.1.1100 D2/ “d-two-slash” DOUBLE
(.Xd] -)Cdz)
xd, is the result of shifting xd; one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

8.6.1.1110 D< “d-less-than” DOUBLE
(d;dy—— flag)
flag is true if and only if d, is less than d.

8.6.1.1120 D= “d-equals” DOUBLE
(xd; xdy —— flag)
flag is true if and only if xd; is bit-for-bit the same as xd,.

8.6.1.1140 D>S “d-to-s” DOUBLE
(d——n)
n is the equivalent of d. An ambiguous condition exists if d lies outside the range of a
signed single-cell number.

See: A.8.6.1.1140 D>S.
double P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 97

8. DOUBLE Word Set Forth 200x / 18.1

8.6.1.1160 DABS “d-abs” DOUBLE

(d—— ud)

ud is the absolute value of d.

8.6.1.1210 DMAX “d-max” DOUBLE

(dydy—— ds)

dj; is the greater of d; and d,.

8.6.1.1220 DMIN “d-min” DOUBLE

(dydy—— d3)

d; is the lesser of d; and d5.

8.6.1.1230 DNEGATE “d-negate” DOUBLE

(di—— dy)

d, is the negation of d;.

8.6.1.1820 Mx/ “m-star-slash” DOUBLE

(dinj+n;—— dy)

Multiply d; by n; producing the triple-cell intermediate result #. Divide ¢ by +n, giving
the double-cell quotient d,. An ambiguous condition exists if +n; is zero or negative, or
the quotient lies outside of the range of a double-precision signed integer.

See: A.8.6.1.1820 M~ /.

8.6.1.1830 M+ “m-plus” DOUBLE

(d] | ud]n—— dz | I/ldz)
Add nto d; | ud;, giving the sum d | ud,.
See: A.8.6.1.1830 M+.

98 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ double

Forth 200x / 18.1 8. DOUBLE Word Set

8.6.2 Double-Number extension words
8.6.2.0420 2ROT “two-rote” DOUBLE EXT

(X7 X2 X3 X4 X5 X6 —— X3 X4 X5 X6 X] X2)

Rotate the top three cell pairs on the stack bringing cell pair x; x; to the top of the stack.

8.6.2.0435 2VALUE “two-value” DOUBLE EXT

(x; x2 “(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value of x; x;.

name is referred to as a “two-value”.
name Execution: (—— x; x,)

Place cell pair x; x, on the stack. The value of x; x; is that given when name was created,
until the phrase “x; x, TO name” is executed, causing a new cell pair x; x, to be assigned
to name.

TO name Run-time: (x; x; ——)
Assign the cell pair x; x; to name.

See: 3.4.1 Parsing and 6.2.2295 TO, A.8.6.2.0435 2VALUE.

8.6.2.1270 DU< “d-u-less” DOUBLE EXT

(ud; ud; —— flag)

flag is true if and only if ud, is less than ud,.

double V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 99

ed18

9. EXCEPTION Word Set Forth 200x / 18.1

9 The optional Exception word set

9.1 Introduction

9.2 Additional terms and notation

None.

9.3 Additional usage requirements

9.3.1 THROW values

The THROW values {-255...-1} shall be used only as assigned by this standard. The values {-4095...-256}
shall be used only as assigned by a system.

Programs shall not define values for use with THROW in the range {-4095...-1}.

9.3.2 Exception frame

An exception frame is the implementation-dependent set of information recording the current execution
state necessary for the proper functioning of CATCH and THROW. It often includes the depths of the data
stack and return stack.

9.3.3 Exception stack

A stack used for the nesting of exception frames by CATCH and THROW. It may be, but need not be,
implemented using the return stack.

9.3.4 Possible actions on an ambiguous condition

A system choosing to execute THROW when detecting one of the ambiguous conditions listed in table 9.1
shall use the throw code listed there.

See: 3.4.4 Possible actions on an ambiguous condition.

9.3.5 Exception handling

There are several methods of coupling CATCH and THROW to other procedural nestings. The usual nestings
are the execution of definitions, use of the return stack, use of loops, instantiation of locals and nesting of
input sources (i.e., with LOAD, EVALUATE, or INCLUDE-FILE).

When a THROW returns control to a CATCH, the system shall un-nest not only definitions, but also, if
present, locals and input source specifications, to return the system to its proper state for continued execu-
tion past the CATCH.

100 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ exception

Forth 200x / 18.1

9. EXCEPTION Word Set

Table 9.1: THROW code assignments

Code Reserved for

Code Reserved for

-1 ABORT -40 invalid BASE for floating point conversion
-2 ABORT" -41 loss of precision
-3 stack overflow -42 floating-point divide by zero
-4 stack underflow -43 floating-point result out of range
-5 return stack overflow -44 floating-point stack overflow
-6 return stack underflow -45 floating-point stack underflow
-7 do-loops nested too deeply during execution -46 floating-point invalid argument
-8 dictionary overflow -47 compilation word list deleted
-9 invalid memory address -48 invalid POSTPONE
-10 division by zero -49 search-order overflow
-11 result out of range -50 search-order underflow
-12 argument type mismatch -51 compilation word list changed
-13 undefined word -52 control-flow stack overflow
-14 interpreting a compile-only word -53 exception stack overflow
-15 invalid FORGET -54 floating-point underflow
-16 attempt to use zero-length string as a name -55 floating-point unidentified fault
-17 pictured numeric output string overflow -56 QUIT
-18 parsed string overflow -57 exception in sending or receiving a character
-19 definition name too long -58 [IF], [ELSE], or [THEN] exception
-20 write to a read-only location -59 ALLOCATE
-21 unsupported operation -60 FREE
(e.g., AT-XY on a too-dumb terminal) -61 RESIZE
-22 control structure mismatch -62 CLOSE-FILE
-23 address alignment exception -63 CREATE-FILE
-24 invalid numeric argument -64 DELETE-FILE
-25 return stack imbalance -65 FILE-POSITION
-26 loop parameters unavailable -66 FILE-SIZE
-27 invalid recursion -67 FILE-STATUS
-28 user interrupt -68 FLUSH-FILE
-29 compiler nesting -69 OPEN-FILE
-30 obsolescent feature -70 READ-FILE
-31 >BODY used on non-CREATEd definition -71 READ-LINE
-32 invalid name argument (e.g., TO name) -72 RENAME-FILE
-33 block read exception -73 REPOSITION-FILE
-34 block write exception -74 RESIZE-FILE
-35 invalid block number -75 WRITE-FILE
-36 invalid file position -76 WRITE-LINE
-37 file I/O exception -77 Malformed xchar
-38 non-existent file -78 SUBSTITUTE
-39 unexpected end of file -79 REPLACES
exception P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 101

ed18

9. EXCEPTION Word Set Forth 200x / 18.1

9.4 Additional documentation requirements

9.4.1 System documentation
9.4.1.1 Implementation-defined options

— Values used in the system by 9.6.1.0875 CATCH and 9.6.1.2275 THROW (9.3.1 THROW values,
9.3.4 Possible actions on an ambiguous condition).

9.4.1.2 Ambiguous conditions
— no additional requirements.
9.4.1.3 Other system documentation

— no additional requirements.

9.4.2 Program documentation

— no additional requirements.

9.5 Compliance-andlabeling

102 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ exception

Forth 200x / 18.1 9. EXCEPTION Word Set

9.6 Glossary

9.6.1 Exception words
9.6.1.0875 CATCH EXCEPTION

(i*xxt— j*x0 | i*xn)

Push an exception frame on the exception stack and then execute the execution token xz
(as with EXECUTE) in such a way that control can be transferred to a point just after
CATCH if THROW is executed during the execution of xt.

If the execution of xt completes normally (i.e., the exception frame pushed by this CATCH
is not popped by an execution of THROW) pop the exception frame and return zero on top
of the data stack, above whatever stack items would have been returned by xt EXECUTE.
Otherwise, the remainder of the execution semantics are given by THROW.

See: A.9.6.1.2275 THROW.

9.6.1.2275 THROW EXCEPTION
(k*xn——k*x | i*xn)

If any bits of n are non-zero, pop the topmost exception frame from the exception stack,
along with everything on the return stack above that frame. Then restore the input source
specification in use before the corresponding CATCH and adjust the depths of all stacks
defined by this standard so that they are the same as the depths saved in the exception
frame (7 is the same number as the 7 in the input arguments to the corresponding CATCH),
put n on top of the data stack, and transfer control to a point just after the CATCH that
pushed that exception frame.

If the top of the stack is non zero and there is no exception frame on the exception stack,
the behavior is as follows:

If n is minus-one (-1), perform the function of 6.1.0670 ABORT (the version of ABORT
in the Core word set), displaying no message.

If n is minus-two, perform the function of 6.1.0680 ABORT" (the version of ABORT"
in the Core word set), displaying the characters ccc associated with the ABORT" that
generated the THROW.

Otherwise, the system may display an implementation-dependent message giving infor-
mation about the condition associated with the THROW code n. Subsequently, the system
shall perform the function of 6.1.0670 ABORT (the version of ABORT in the Core word
set).

See: A.9.6.1.2275 THROW.

exception P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 103

9. EXCEPTION Word Set Forth 200x / 18.1

9.6.2 Exception extension words
9.6.2.0670 ABORT EXCEPTION EXT

Extend the semantics of 6.1.0670 ABORT to be:
(i*x——) (Rij*x——)
Perform the function of —1 THROW.

See: 6.1.0670 ABORT.

9.6.2.0680 ABORT" “abort-quote” EXCEPTION EXT

Extend the semantics of 6.1.0680 ABORT" to be:
Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“ccc{quote)” ——)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below
to the current definition.

Run-time: (i*xx;—— | i*x) (R:ij*x—— | j*x)

Remove x; from the stack. If any bit of x; is not zero, perform the function of -2 THROW,
displaying ccc if there is no exception frame on the exception stack.

See: 3.4.1 Parsing, 6.1.0680 ABORT".

104 1 “#$% & ()*+,-./digits:; <=>? @ALPHA[\]"_‘alpha {1}~ exception

Forth 200x / 18.1

10. FACILITY Word Set

10 The optional Facility word set

10.1 Introduction

10.2 Additional terms and notation
None.
10.3 Additional usage requirements

10.3.1 Data types
Append table 10.1 to table 3.1.

Table 10.1: Data types

Symbol Data type Size on stack

struct-sys data structures implementation dependent

10.3.1.1 Structure type

The implementation-dependent data generated upon beginning to compile a BEGIN-STRUCTURE ...
END-STRUCTURE structure and consumed at its close is represented by the symbol struct-sys throughout

this standard.

10.3.1.2 Character types

Programs that use more than seven bits of a character by EKEY have an environmental dependency.

See: 3.1.2 Character types.

10.4 Additional documentation requirements
10.4.1 System documentation
10.4.1.1 Implementation-defined options

— encoding of keyboard events 10.6.2.1305 EKEY);

— duration of a system clock tick;

— repeatability to be expected from execution of 10.6.2.1905 MS.
10.4.1.2 Ambiguous conditions

— 10.6.1.0742 AT—-XY operation can’t be performed on user output device;

— A name defined by 10.6.2.0763 BEGIN-STRUCTURE is executed before the corresponding

10.6.2.1336 END-STRUCTURE has been executed.

facility P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 105

10. FACILITY Word Set Forth 200x / 18.1

10.4.1.3 Other system documentation

— no additional requirements.

10.4.2 Program documentation
10.4.2.1 Environmental dependencies

— using more than seven bits of a character in 10.6.2.1305 EXKEY.
10.4.2.2 Other program documentation

— no additional requirements.

10.5 Compliance and labeling

10.5.1 Forth-2012 systems

The phrase “Providing the Facility word set” shall be appended to the label of any Standard System that
provides all of the Facility word set.

The phrase “Providing name(s) from the Facility Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Facility Extensions word set.

The phrase “Providing the Facility Extensions word set” shall be appended to the label of any Standard
System that provides all of the Facility and Facility Extensions word sets.

10.5.2 Forth-2012 programs

The phrase “Requiring the Facility word set” shall be appended to the label of Standard Programs that
require the system to provide the Facility word set.

The phrase “Requiring name(s) from the Facility Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Facility Extensions word set.

The phrase “Requiring the Facility Extensions word set” shall be appended to the label of Standard Pro-

grams that require the system to provide all of the Facility and Facility Extensions word sets.

10.6 Glossary

10.6.1 Facility words
10.6.1.0742 AT-XY “at-x-y” FACILITY

(uyup;——)

Perform implementation-dependent steps so that the next character displayed will appear
in column u;, row u, of the user output device, the upper left corner of which is column
zero, row zero. An ambiguous condition exists if the operation cannot be performed on
the user output device with the specified parameters.

106 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ facility

Forth 200x / 18.1 10. FACILITY Word Set

10.6.1.1755 KEY? “key-question” FACILITY

(—— flag)

If a character is available, return frue. Otherwise, return false. If non-character key-
board events are available before the first valid character, they are discarded and are
subsequently unavailable. The character shall be returned by the next execution of KEY.

After KEY? returns with a value of frue, subsequent executions of KEY? prior to the
execution of KEY or EKEY also return true, without discarding keyboard events.

See: A.10.6.1.1755 KEY 2.

10.6.1.2005 PAGE FACILITY

(==
Move to another page for output. Actual function depends on the output device. On a

terminal, PAGE clears the screen and resets the cursor position to the upper left corner.
On a printer, PAGE performs a form feed.

10.6.2 Facility extension words
10.6.2.0135 +FIELD “plus-field” FACILITY EXT

(ngny “(spaces)name” —— n3)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Return n; = n; + n, where n; is the
offset in the data structure before +FIELD executes, and n; is the size of the data to be
added to the data structure. n; and n, are in address units.

name Execution: (addr; —— addr,)
Add n; to addr; giving addr;.

See: 10.6.2.0763 BEGIN-STRUCTURE, 10.6.2.1336 END-STRUCTURE,
10.6.2.0893 CFIELD:, 10.6.2.1518 FIELD:, 12.6.2.1517 FFIELD:,
12.6.2.2206.40 SFFIELD:, 12.6.2.1207.40 DFFIELD:, A.10.6.2.0135 +FIELD.

10.6.2.0763 BEGIN-STRUCTURE FACILITY EXT

(“(spaces)name” —— struct-sys 0)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Return a struct-sys (zero or more
implementation dependent items) that will be used by END-STRUCTURE and an initial
offset of 0.

facility P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 107

10. FACILITY Word Set Forth 200x / 18.1

name Execution: (—— +n)

+n is the size in memory expressed in address units of the data structure. An ambiguous
condition exists if name is executed prior to the associated END-STRUCTURE being
executed.

See: 10.6.2.0135 +FIELD, 10.6.2.1336 END-STRUCTURE,
A.10.6.2.0763 BEGIN-STRUCTURE.

10.6.2.0893 CFIELD: “c-field-colon” FACILITY EXT

(n; “(spaces)name” —— ny)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first char-
acter aligned value greater than or equal to n;. n, = offset + I character.

Create a definition for name with the execution semantics given below.
name Execution: (addr; —— addr,)

Add the offset calculated during the compile-time action to addr; giving the address
addr,.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

10.6.2.1305 EKEY “e-key” FACILITY EXT
(—=x)
Receive one keyboard event x. The encoding of keyboard events is implementation
defined.

See: 6.1.1750 KEY, 10.6.1.1755 KEY ?, A.10.6.2.1305 EKEY.

10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT

(x—— xfalse | char true)

If the keyboard event x corresponds to a character in the implementation-defined charac-
ter set, return that character and true. Otherwise return x and false.

See: A.10.6.2.1306 EKEY>CHAR.

10.6.2.1306.40 EKEY>FKEY “e-key-to-f-key” FACILITY EXT

(x—— uflag)

If the keyboard event x corresponds to a keypress in the implementation-defined special
key set, return that key’s id u and true. Otherwise return x and false.

108 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ facility

Forth 200x / 18.1 10. FACILITY Word Set

Note: The keyboard may lack some of the keys, or the capability to report them. Programs
should be written such that they also work (although less conveniently or with less
functionality) if these key numbers cannot be produced.

See: 10.6.2.1305 EKEY, 10.6.2.1740.01 K-ALT-MASK, 10.6.2.1740.02 K—-CTRL-MASK,
10.6.2.1740.03 K-DELETE, 10.6.2.1740.04 K-DOWN, 10.6.2.1740.05 K-END,
10.6.2.1740.06 K-F1, 10.6.2.1740.07 K-F10, 10.6.2.1740.08 K-F11,
10.6.2.1740.09 K-F12, 10.6.2.1740.10 K-F2, 10.6.2.1740.11 K-F3,
10.6.2.1740.12 K-F4, 10.6.2.1740.13 K-F5, 10.6.2.1740.14 K-Fo,
10.6.2.1740.15 K-F7, 10.6.2.1740.16 K-F8, 10.6.2.1740.17 K-F9,
10.6.2.1740.18 XK-HOME, 10.6.2.1740.19 K-INSERT, 10.6.2.1740.20 K-LEFT,
10.6.2.1740.21 K-NEXT, 10.6.2.1740.22 K-PRIOR, 10.6.2.1740.23 K-RIGHT,
10.6.2.1740.24 K-SHIFT-MASK, 10.6.2.1740.25 K-UP,
A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1307 EKEY? “e-key-question” FACILITY EXT

(—— flag)

If a keyboard event is available, return frue. Otherwise return false. The event shall be
returned by the next execution of EKEY.

After EKEY? returns with a value of true, subsequent executions of EKEY? prior to the
execution of KEY, KEY? or EKEY also return true, referring to the same event.

10.6.2.1325 EMIT? “emit-question” FACILITY EXT

(—— flag)

flag is true if the user output device is ready to accept data and the execution of EMIT
in place of EMIT? would not have suffered an indefinite delay. If the device status is
indeterminate, flag is true.

See: A.10.6.2.1325 EMIT?>.

10.6.2.1336 END-STRUCTURE FACILITY EXT

(struct-sys +n——)
Terminate definition of a structure started by BEGIN—-STRUCTURE.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE.

facility P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 109

10. FACILITY Word Set Forth 200x / 18.1

10.6.2.1518 FIELD: “field-colon” FACILITY EXT

name Execution:

See:

(n; “(spaces)name” —— ny)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first cell
aligned value greater than or equal to n;. n, = offset + 1 cell.

Create a definition for name with the execution semantics given below.
(addr; —— addr;)

Add the offser calculated during the compile-time action to addr; giving the address
addr,.

10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

10.6.2.1740.01 K-ALT-MASK FACILITY EXT

See:

(——u)

Mask for the ALT key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.02 K—-CTRL-MASK FACILITY EXT

See:

(——u)

Mask for the CTRL key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.03 K—-DELETE FACILITY EXT

See:

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “Delete” key.

10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

110 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ facility

Forth 200x / 18.1 10. FACILITY Word Set

10.6.2.1740.04 K—-DOWN FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor down” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.05 K—END FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “End” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.06 K-F1 “k-f-17 FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F1” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.07 K-F10 “k-£-107 FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F10” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.08 K-F11 “k-f-117 FACILITY EXT

(== u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F11” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

facility V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 111

10. FACILITY Word Set Forth 200x / 18.1

10.6.2.1740.09 K-F12 “k-f-127 FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F12” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.10 K-F2 “k-£-27 FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F2” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.11 K-F3 “k-f-3” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F3” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.12 K-F4 “k-f-4” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F4” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.13 K-F5 “k-£-5” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F5” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

112 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ facility

Forth 200x / 18.1 10. FACILITY Word Set

10.6.2.1740.14 K-F6 “k-f-6” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F6” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.15 K-F7 “k-£-7” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F7” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.16 K-F8 “k-f-8” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F8” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.17 K-F9 “k-£-9” FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F9” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.18 K—HOME FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “home” or “Pos1” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

facility V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 113

10. FACILITY Word Set Forth 200x / 18.1

10.6.2.1740.19 K—-INSERT FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “Insert” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.20 K—-LEFT FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor left” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.21 K—-NEXT FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “PgDn” (Page Down) or “Next” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.22 K-PRIOR FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “PgUp” (Page Up) or “Prior” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.23 K—RIGHT FACILITY EXT

(== u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor right” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

114 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ facility

Forth 200x / 18.1 10. FACILITY Word Set

10.6.2.1740.24 K-SHIFT-MASK FACILITY EXT

(——u)

Mask for the SHIFT key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.25 K-UP FACILITY EXT

(——u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor up” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1905 MS FACILITY EXT

(u—-)
Wait at least u milliseconds.

Note: The actual length and variability of the time period depends upon the implementation-de-
fined resolution of the system clock and upon other system and computer characteristics
beyond the scope of this standard.

See: A.10.6.2.1905 MsS.

10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT

(—— +n; +ny +n3 +ny +ns +ng)

Return the current time and date. +n; is the second {0...59}, +n,is the minute {0...59},
+n;3is the hour {0...23}, +n,is the day {1...31}, +n5is the month {1...12} and +ngis
the year (e.g., 1991).

See: A.10.6.2.2292 TIME&DATE.

facility V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 115

11. FILE Word Set Forth 200x / 18.1

11 The optional File-Access word set

11.1 Introduction

These words provide access to mass storage in the form of “files” under the following assumptions:

files are provided by a host operating system;

file names are represented as character strings;

the format of file names is determined by the host operating system;

an open file is identified by a single-cell file identifier (fileid);

file-state information (e.g., position, size) is managed by the host operating system;

file contents are accessed as a sequence of characters;

file read operations return an actual transfer count, which can differ from the requested transfer count.

11.2 Additional terms

file-access method: A permissible means of accessing a file, such as “read/write” or “read only”.
file position: The character offset from the start of the file.

input file: The file, containing a sequence of lines, that is the input source.

11.3 Additional usage requirements

11.3.1 Data types
Append table 11.1 to table 3.1.

Table 11.1: Data types

Symbol Data type Size on stack
fam file access method 1 cell
fileid file identifier 1 cell

11.3.1.1 File identifiers

File identifiers are implementation-dependent single-cell values that are passed to file operators to designate
specific files. Opening a file assigns a file identifier, which remains valid until closed.

11.3.1.3 File access methods (11.3.1.3)
File access methods are implementation-defined single-cell values.
11.3.1.4 File names

A character string containing the name of the file. The file name may include an implementation-dependent
path name. The format of file names is implementation defined.

116 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ file

Forth 200x / 18.1 11. FILE Word Set

11.3.2 Blocks in files

Blocks may, but need not, reside in files. When they do:

— Block numbers may be mapped to one or more files by implementation-defined means. An ambigu-
ous condition exists if a requested block number is not currently mapped;

— An UPDATEJ block that came from a file shall be transferred back to the same file.

11.3.3 Input source

The File-Access word set creates another input source for the text interpreter. When the input source is a
text file, BLK shall contain zero, SOURCE—ID shall contain the fileid of that text file, and the input buffer
shall contain one line of the text file. During text interpretation from a text file, the value returned by
FILE-POSITION for the fileid returned by SOURCE—-ID is undefined. A standard program shall not call
REPOSITION-FILE on the fileid returned by SOURCE—-ID.

Input with INCLUDED, INCLUDE-FILE, LOAD and EVALUATE shall be nestable in any order to at least
eight levels.

A program that uses more than eight levels of input-file nesting has an environmental dependency. See:
3.3.3.5 Input buffers, 9 The Exception word set.

11.3.4 Other transient regions

11.3.5 Parsing

When parsing from a text file using a space delimiter, control characters shall be treated the same as the
space character.

Lines of at least 128 characters shall be supported. A program that requires lines of more than 128
characters has an environmental dependency.

A program may reposition the parse area within the input buffer by manipulating the contents of >IN.
More extensive repositioning can be accomplished using SAVE-INPUT and RESTORE—-INPUT.

See: 3.4.1 Parsing.

11.4 Additional documentation requirements
11.4.1 System documentation
11.4.1.1 Implementation-defined options

— file access methods used by 11.6.1.0765 BIN, 11.6.1.1010 CREATE-FILE,
11.6.1.1970 OPEN-FILE, 11.6.1.2054 R /0, 11.6.1.2056 R /W and 11.6.1.2425 W/ 0O;

— file exceptions;

file V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 117

edl8

edl8

11. FILE Word Set Forth 200x / 18.1

file line terminator (11.6.1.2090 READ-LINE);

file name format (11.3.1.4 File names);

information returned by 11.6.2.1524 FILE-STATUS;

input file state after an exception (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);
maximum depth of file input nesting (11.3.3 Input source);

maximum size of input line (11.3.5 Parsing);

methods for mapping block ranges to files (11.3.2 Blocks in files);

11.4.1.2 Ambiguous conditions

attempting to position a file outside its boundaries (11.6.1.2142 REPOSITION-FILE);

attempting to read from file positions not yet written (11.6.1.2080 READ-FILE,
11.6.1.2090 READ-LINE);

fileid is invalid (11.6.1.1717 INCLUDE-FILE);

I/O exception reading or closing fileid (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);
named file cannot be opened (11.6.1.1718 INCLUDED);

requesting an unmapped block number (11.3.2 Blocks in files);

using 11.6.1.2218 SOURCE~-ID when 7.6.1.0790 BLX is not zero;

a file is required while it is being REQUIRED (11.6.2.2144.50) or INCLUDED (11.6.1.1718);

a marker is defined outside and executed inside a file or vice versa, and the file is REQUIRED
(11.6.2.2144.50) again;

the same file is required twice using different names (e.g., through symbolic links), or different files
with the same name are provided to 11.6.2.2144.50 REQUIRED (by doing some renaming between
the invocations of REQUIRED);

the stack effect of including with 11.6.2.2144.50 REQUIRED the file is not (i ¥*x —— i *x).

11.4.1.3 Other system documentation

11.4.

no additional requirements.

2 Program documentation

11.4.2.1 Environmental dependencies

requiring lines longer than 128 characters (11.3.5 Parsing);

using more than eight levels of input-file nesting (11.3.3 Input source).

118

L“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_“alpha { |} ~ file

Forth 200x / 18.1 11. FILE Word Set

11.4.2.2 Other program documentation

— no additional requirements.

11.5 Compliance and labeling
11.5.1 Forth-2012 systems

The phrase “Providing the File Access word set” shall be appended to the label of any Standard System
that provides all of the File Access word set.

The phrase “Providing name(s) from the File Access Extensions word set” shall be appended to the label
of any Standard System that provides portions of the File Access Extensions word set.

The phrase “Providing the File Access Extensions word set” shall be appended to the label of any Standard
System that provides all of the File Access and File Access Extensions word sets.

11.5.2 Forth-2012 programs

The phrase “Requiring the File Access word set” shall be appended to the label of Standard Programs that
require the system to provide the File Access word set.

The phrase “Requiring name(s) from the File Access Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the File Access Extensions word set.

The phrase “Requiring the File Access Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the File Access and File Access Extensions word sets.

11.6 Glossary

11.6.1 File Access words
11.6.1.0080 (“paren” FILE

(“ccc(paren)” ——)
Extend the semantics of 6.1.0080 (to include:

When parsing from a text file, if the end of the parse area is reached before a right
parenthesis is found, refill the input buffer from the next line of the file, set >IN to zero,
and resume parsing, repeating this process until either a right parenthesis is found or the
end of the file is reached.

11.6.1.0765 BIN FILE

(fam; —— fam;)

Modify the implementation-defined file access method fam; to additionally select a
“binary”, i.e., not line oriented, file access method, giving access method fams,.

See: 11.6.1.2054 R/0, 11.6.1.2056 R /W, 11.6.1.2425 W/0, A.11.6.1.0765 BIN.

file V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 119

11. FILE Word Set Forth 200x / 18.1

11.6.1.0900 CLOSE-FILE FILE

(fileid —— ior)

Close the file identified by fileid. ior is the implementation-defined I/O result code.

11.6.1.1010 CREATE-FILE FILE

(c-addr u fam —— fileid ior)

Create the file named in the character string specified by c-addr and u, and open it with
file access method fam. The meaning of values of fam is implementation defined. If a
file with the same name already exists, recreate it as an empty file.

If the file was successfully created and opened, ior is zero, fileid is its identifier, and the
file has been positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

See: A.11.6.1.1010 CREATE-FILE.

11.6.1.1190 DELETE-FILE FILE

(c-addr u—— ior)

Delete the file named in the character string specified by c-addr u. ior is the implement-
ation-defined I/O result code.

11.6.1.1520 FILE-POSITION FILE

(fileid —— ud ior)

ud is the current file position for the file identified by fileid. ior is the implementation-
defined I/O result code. ud is undefined if ior is non-zero.

11.6.1.1522 FILE-SIZE FILE

(fileid —— ud ior)

ud is the size, in characters, of the file identified by fileid. ior is the implementation-
defined I/O result code. This operation does not affect the value returned by FILE—
POSITION. ud is undefined if ior is non-zero.

120 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ file

Forth 200x / 18.1 11. FILE Word Set

11.6.1.1717

11.6.1.1718

INCLUDE-FILE FILE

(i*xfileid—— j*x)

Remove fileid from the stack. Save the current input source specification, including
the current value of SOURCE-1ID. Store fileid in SOURCE—ID. Make the file specified
by fileid the input source. Store zero in BLK. Other stack effects are due to the words
included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents
of that line, set >IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

When the end of the file is reached, close the file and restore the input source specification
to its saved value.

An ambiguous condition exists if fileid is invalid, if there is an I/O exception reading
fileid, or if an I/O exception occurs while closing fileid. When an ambiguous condition
exists, the status (open or closed) of any files that were being interpreted is implement-
ation-defined.

See: 11.3.3 Input source, A.11.6.1.1717 INCLUDE-FILE.

INCLUDED FILE

(i*xc-addru—— j*x)

Remove c-addr u from the stack. Save the current input source specification, including
the current value of SOURCE-ID. Open the file specified by c-addr u, store the resulting
fileid in SOURCE~-ID, and make it the input source. Store zero in BLK. Other stack
effects are due to the words included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents
of that line, set >IN to zero, and interpret.

Text interpretation begins at the start of the file.

When the end of the file is reached, close the file and restore the input source specification
to its saved value.

An ambiguous condition exists if the named file can not be opened, if an I/O exception
occurs reading the file, or if an I/O exception occurs while closing the file. When an
ambiguous condition exists, the status (open or closed) of any files that were being
interpreted is implementation-defined.

INCLUDED may allocate memory in data space before it starts interpreting the file.

See: 11.6.1.1717 INCLUDE-FILE, A.11.6.1.1718 INCLUDED.

file

V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 121

11. FILE Word Set Forth 200x / 18.1

11.6.1.1970

11.6.1.2054

11.6.1.2056

11.6.1.2080

OPEN-FILE FILE

(c-addr u fam —— fileid ior)

Open the file named in the character string specified by c-addr u, with file access method
indicated by fam. The meaning of values of fam is implementation defined.

If the file is successfully opened, ior is zero, fileid is its identifier, and the file has been
positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

See: A.11.6.1.1970 OPEN-FILE.

R/O “r-0” FILE

(== fam)

fam is the implementation-defined value for selecting the “read only” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

R/W “r-w” FILE

(== fam)

fam is the implementation-defined value for selecting the “read/write” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

READ-FILE FILE

(c-addr u; fileid —— uy ior)

Read u; consecutive characters to c-addr from the current position of the file identified
by fileid.

If u; characters are read without an exception, ior is zero and u, is equal to u;.

If the end of the file is reached before u; characters are read, ior is zero and u, is the
number of characters actually read.

If the operation is initiated when the value returned by FILE—-POSITION is equal to the
value returned by FILE-SIZE for the file identified by fileid, ior is zero and u; is zero.

If an exception occurs, ior is the implementation-defined I/O result code, and u; is the
number of characters transferred to c-addr without an exception.

An ambiguous condition exists if the operation is initiated when the value returned
by FILE-POSITION is greater than the value returned by FILE-SIZE for the file
identified by fileid, or if the requested operation attempts to read portions of the file not
written.

122

L“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_“alpha { |} ~ file

Forth 200x / 18.1 11. FILE Word Set

At the conclusion of the operation, FILE—POSITION returns the next file position after
the last character read.

See: A.11.6.1.2080 READ-FILE.

11.6.1.2090 READ-LINE FILE

(c-addr u; fileid —— u, flag ior)

Read the next line from the file specified by fileid into memory at the address c-addr.
At most u; characters are read. Up to two implementation-defined line-terminating
characters may be read into memory at the end of the line, but are not included in the
count u,. The line buffer provided by c-addr should be at least u;+2 characters long.

If the operation succeeded, flag is true and ior is zero. If a line terminator was received
before u; characters were read, then u;, is the number of characters, not including the line
terminator, actually read (0 <= u, <= u;). When u; = u, the line terminator has yet to
be reached.

If the operation is initiated when the value returned by FILE-POSITION is equal to the
value returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero,
and u; is zero. If ior is non-zero, an exception occurred during the operation and ior is
the implementation-defined 1/O result code.

An ambiguous condition exists if the operation is initiated when the value returned
by FILE-POSITION is greater than the value returned by FILE-SIZE for the file
identified by fileid, or if the requested operation attempts to read portions of the file not
written.

At the conclusion of the operation, FILE—-POSITION returns the next file position after
the last character read.

See: A.11.6.1.2090 READ-LINE.

11.6.1.2142 REPOSITION-FILE FILE

(ud fileid —— ior)

Reposition the file identified by fileid to ud. ior is the implementation-defined I/O result
code. An ambiguous condition exists if the file is positioned outside the file boundaries.

At the conclusion of the operation, FILE-POSITION returns the value ud.

11.6.1.2147 RESIZE-FILE FILE

(ud fileid —— ior)

Set the size of the file identified by fileid to ud. ior is the implementation-defined I/O
result code.

file V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 123

11. FILE Word Set Forth 200x / 18.1

If the resultant file is larger than the file before the operation, the portion of the file added
as a result of the operation might not have been written.

At the conclusion of the operation, FILE-SIZE returns the value ud and FILE-
POSITION returns an unspecified value.

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE

edts 11.6.1.2165 S" “s-quote” FILE
ed18

Interpretation:

Compilation:

Run-time

See:

11.6.1.2218 SOURCE-ID “source-i-d” FILE

(—— 01 -1 fileid)

Extend 6.2.2218 SOURCE—-1ID to include text-file input as follows:

SOURCE-ID Input source

fileid Text file “fileid”
-1 String (via EVALUATE)
0 User input device

An ambiguous condition exists if SOURCE-ID is used when BLK contains a non-zero
value.

11.6.1.2425 W/O “w-0" FILE

(== fam)
fam is the implementation-defined value for selecting the “write only” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

124 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ file

Forth 200x / 18.1 11. FILE Word Set

11.6.1.2480 WRITE-FILE FILE

(c-addr u fileid —— ior)

Write u characters from c-addr to the file identified by fileid starting at its current posi-
tion. ior is the implementation-defined I/O result code.

At the conclusion of the operation, FILE-POSITION returns the next file position after
the last character written to the file, and FILE-SIZE returns a value greater than or
equal to the value returned by FILE-POSITION.

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.1.2485 WRITE-LINE FILE

(c-addr u fileid —— ior)

Write u characters from c-addr followed by the implementation-dependent line termina-
tor to the file identified by fileid starting at its current position. ior is the implementation-
defined I/O result code.

At the conclusion of the operation, FILE—POSITION returns the next file position after
the last character written to the file, and FILE-SIZE returns a value greater than or
equal to the value returned by FILE-POSITION.

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.2 File-Access extension words
11.6.2.1524 FILE-STATUS FILE EXT

(c-addr u—— x ior)

Return the status of the file identified by the character string c-addr u. If the file exists,
ior is zero; otherwise ior is the implementation-defined I/O result code. x contains
implementation-defined information about the file.

11.6.2.1560 FLUSH-FILE FILE EXT

(fileid —— ior)

Attempt to force any buffered information written to the file referred to by fileid to be
written to mass storage, and the size information for the file to be recorded in the storage
directory if changed. If the operation is successful, ior is zero. Otherwise, it is an
implementation-defined I/O result code.

file V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 125

11. FILE Word Set Forth 200x / 18.1

11.6.2.1714 INCLUDE FILE EXT
(i*x “name” —— j*x)

Skip leading white space and parse name delimited by a white space character. Push the
address and length of the name on the stack and perform the function of INCLUDED.

See: 11.6.1.1718 INCLUDED, A.11.6.2.1714 INCLUDE.

11.6.2.2125 REFILL FILE EXT
(== flag)
Extend the execution semantics of 6.2.2125 REFILL with the following:

When the input source is a text file, attempt to read the next line from the text-input file.
If successful, make the result the current input buffer, set >IN to zero, and return frue.
Otherwise return false.

See: 6.2.2125 REFILL, 7.6.2.2125 REFILL.

11.6.2.2130 RENAME-FILE FILE EXT

(c-addr; u; c-addr; u, —— ior)

Rename the file named by the character string c-addr; u; to the name in the character
string c-addr; u,. ior is the implementation-defined I/O result code.

11.6.2.2144.10 REQUIRE FILE EXT
(i*x “name” —— i *x)

Skip leading white space and parse name delimited by a white space character. Push the
address and length of the name on the stack and perform the function of REQUIRED.

See: 11.6.2.2144.50 REQUIRED, A.11.6.2.2144.10 REQUIRE.

11.6.2.2144.50 REQUIRED FILE EXT

(i*xc-addru—— i*x)

If the file specified by c-addr u has been INCLUDED or REQUIRED already, but not
between the definition and execution of a marker (or equivalent usage of FORGET),
discard c-addr u; otherwise, perform the function of INCLUDED.

An ambiguous condition exists if a file is REQUIRED while it is being REQUIRED or
INCLUDED.

An ambiguous condition exists, if a marker is defined outside and executed inside a file
or vice versa, and the file is REQUIRED again.

126 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA[\]"_*alpha { | } ~ file

Forth 200x / 18.1 11. FILE Word Set

An ambiguous condition exists if the same file is REQUIRED twice using different names
(e.g., through symbolic links), or different files with the same name are REQUIRED (by
doing some renaming between the invocations of REQUIRED).

An ambiguous condition exists if the stack effect of including the file is not (i *x ——
i*x).

See: A.11.6.2.2144.50 REQUIRED.

11.6.2.2266 s\" “s-backslash-quote” FILE EXT cass
ed18

Interpretation:

Compilation:

Run-time

See:

file V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 127

12. FLOATING Word Set Forth 200x / 18.1

12 The optional Floating-Point word set

12.1 Introduction

12.2 Additional terms and notation

12.2.1 Definition of terms

float-aligned address: The address of a memory location at which a floating-point number can be ac-
cessed.

double-float-aligned address: The address of a memory location at which a 64-bit IEEE double-precision
floating-point number can be accessed.

single-float-aligned address: The address of a memory location at which a 32-bit IEEE single-precision
floating-point number can be accessed.

IEEE floating-point number: A single- or double-precision floating-point number as defined in
ANSVIEEE 754-1985.

12.2.2 Notation
12.2.2.2 Stack notation

Floating-point stack notation is:
(F: before —— after)

A unified stack notation is provided for systems with the environmental restriction that the floating-point
numbers are kept on the data stack.

12.3 Additional usage requirements

12.3.1 Data types
Append table 12.1 to table 3.1.

Table 12.1: Data Types

Symbol Data type Size on stack
df-addr double-float-aligned address 1 cell
f-addr float-aligned address 1 cell
r floating-point number implementation-defined
sf-addr single-float-aligned address 1 cell

12.3.1.1 Addresses

The set of float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a floating-point number to a float-aligned address shall produce a float-aligned address.

128 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

The set of double-float-aligned addresses is an implementation-defined subset of the set of aligned ad-
dresses. Adding the size of a 64-bit IEEE double-precision floating-point number to a double-float-aligned
address shall produce a double-float-aligned address.

The set of single-float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a 32-bit IEEE single-precision floating-point number to a single-float-aligned address
shall produce a single-float-aligned address.

12.3.1.2 Floating-point numbers

The internal representation of a floating-point number, including the format and precision of the significand
and the format and range of the exponent, is implementation defined.

Any rounding or truncation of floating-point numbers is implementation defined.

12.3.2 Floating-point operations

“Round to nearest” means round the result of a floating-point operation to the representable value nearest
the result. If the two nearest representable values are equally near the result, the one having zero as its least
significant bit shall be delivered.

“Round toward negative infinity” means round the result of a floating-point operation to the representable
value nearest to and no greater than the result.

“Round toward zero” means round the result of a floating-point operation to the representable value nearest
to zero, frequently referred to as “truncation”.

12.3.3 Floating-point stack
A last in, first out list that shall be used by all floating-point operators.

The width of the floating-point stack is implementation-defined. The floating-point stack shall be separate
from the data and return stacks.

The size of a floating-point stack shall be at least 6 items.

A program that depends on the floating-point stack being larger than six items has an environmental de-
pendency.

12.3.4 Environmental queries
Append table 12.2 to table 3.5.

See: 3.2.6 Environmental queries.

12.3.5 Address alignment

Since the address returned by a CREATEd word is not necessarily aligned for any particular class of
floating-point data, a program shall align the address (to be float aligned, single-float aligned, or double-
float aligned) before accessing floating-point data at the address.

See: 3.3.3.1 Address alignment, 12.3.1.1 Addresses.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 129

12. FLOATING Word Set Forth 200x / 18.1

Table 12.2: Environmental Query Strings
String Value data type Constant? Meaning
FLOATING-STACK n yes the maximum depth of the separate floating-
point stack. On systems with the environ-
mental restriction of keeping floating-point
items on the data stack, n = 0.
MAX-FLOAT r yes largest usable floating-point number

12.3.6 Variables

A program may address memory in data space regions made available by FVARIABLE. These regions may
be non-contiguous with regions subsequently allocated with , (comma) or ALLOT. See: 3.3.3.3 Variables.

12.3.7 Text interpreter input number conversion

If the Floating-Point word set is present in the dictionary and the current base is DECIMAL, the input
number-conversion algorithm shall be extended to recognize floating-point numbers in this form:

Convertible string := (significand) {exponent)
(significand) := [{sign)](digits)[.(digits0)]
(exponent) := E[(szgn) (digits0)
(sign) = { +1-
(digits) := (digir) (dlgltSO)
(digits0) := (digit)*
(digity ={0111213141516171819}

These are examples of valid representations of floating-point numbers in program source:
1E 1.E 1.E0 +1.23E-1 -1.23E+1

See: 3.4.1.3 Text interpreter input number conversion, 12.6.1.0558 >FLOAT.

12.4 Additional documentation requirements

12.4.1 System documentation

12.4.1.1 Implementation-defined options

format and range of floating-point numbers (12.3.1 Data types, 12.6.1.2143 REPRESENT);

results of 12.6.1.2143 REPRESENT when float is out of range;

rounding or truncation of floating-point numbers (12.3.1.2 Floating-point numbers);

size of floating-point stack (12.3.3 Floating-point stack);

width of floating-point stack (12.3.3 Floating-point stack).
12.4.1.2 Ambiguous conditions

— DF@ or DF'! is used with an address that is not double-float aligned;

130 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

FQ or F'! is used with an address that is not float aligned;

floating point result out of range (e.g., in 12.6.1.1430 F /);

SFQ@ or SF'! is used with an address that is not single-float aligned;

— BASE is not decimal (12.6.1.2143 REPRESENT, 12.6.2.1427 r ., 12.6.2.1513 FE., 12.6.2.1613
FS.);

both arguments equal zero (12.6.2.1489 FATAN?2);

cosine of argument is zero for 12.6.2.1625 FTAN;
dividing by zero (12.6.1.1430 £ /);

exponent too big for conversion (12.6.2.1203 DF' !, 12.6.2.1204 DF @, 12.6.2.2202 SF !, 12.6.2.2203
SFQ);

— float less than one (12.6.2.1477 FACOSH);

— float less than or equal to minus-one (12.6.2.1554 FLNP1);

— float less than or equal to zero (12.6.2.1553 FLN, 12.6.2.1557 FLOG);

— float less than zero (12.6.2.1618 FSQRT);

— float magnitude greater than one (12.6.2.1476 FACOS, 12.6.2.1486 FASIN, 12.6.2.1491 FATANH);
— integer part of float can’t be represented by d in 12.6.1.1470 F>D;

— string larger than pictured-numeric output area (12.6.2.1427 ., 12.6.2.1513 FE., 12.6.2.1613
FS.);

— integer part of float can’t be represented by n in 12.6.2.1471 F>sS.
12.4.1.3 Other system documentation
— no additional requirements.
12.4.1.4 Environmental restrictions
— Keeping floating-point numbers on the data stack.
12.4.2 Program documentation
12.4.2.1 Environmental dependencies
— requiring the floating-point stack to be larger than six items (12.3.3 Floating-point stack);
— requiring floating-point numbers to be kept on the data stack, with n cells per floating point number.
12.4.2.2 Other program documentation

— no additional requirements.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 131

12. FLOATING Word Set Forth 200x / 18.1

12.5 Compliance and labeling

12.5.1 Forth-2012 systems

The phrase “Providing the Floating-Point word set” shall be appended to the label of any Standard System
that provides all of the Floating-Point word set.

The phrase “Providing name(s) from the Floating-Point Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Floating-Point Extensions word set.

The phrase “Providing the Floating-Point Extensions word set” shall be appended to the label of any Stand-
ard System that provides all of the Floating-Point and Floating-Point Extensions word sets.

12.5.2 Forth-2012 programs

The phrase ‘“Requiring the Floating-Point word set” shall be appended to the label of Standard Programs
that require the system to provide the Floating-Point word set.

The phrase “Requiring name(s) from the Floating-Point Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Floating-Point Extensions
word set.

The phrase “Requiring the Floating-Point Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Floating-Point and Floating-Point Extensions word
sets.

12.6 Glossary

12.6.1 Floating-Point words
12.6.1.0558 >FLOAT “to-float” FLOATING

(c-addru—— true | false) (F: —— r |) or(c-addru—— rtrue | false)

An attempt is made to convert the string specified by c-addr and u to internal floating-
point representation. If the string represents a valid floating-point number in the syntax
below, its value r and frue are returned. If the string does not represent a valid floating-
point number only false is returned.

A string of blanks should be treated as a special case representing zero.

The syntax of a convertible string

:= (significand)[{exponent)]

(signiﬁcand) = [(sign)1{(digits)[.(digits0)] | .(digits) }
(exponent) = (marker) (digits0)
(marker) := {{e-form) | (sign-form)}
(e-form) = (e- char) (sign-form)]
(sign-form) = { +1 -
(e-char) ={D|dIEIe}

See: A.12.6.1.0558 >FLOAT.

132 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.1.1130 D>F “d-to-f” FLOATING

(d-—) (F: ——r)or(d——r)
r is the floating-point value which is nearest to d in the sense of “round to nearest”.

See: 12.3.2 Floating-point operations

12.6.1.1400 F! “f-store” FLOATING

(fraddr——) (F:r——) or (rf-addr—-)

Store r at f-addr.

12,6.1.1410 Fx “f-star” FLOATING

(Forprp——=r3) or(ryrp——r3)

Multiply r; by r; giving r;3.

12.6.1.1420 F+ “f-plus” FLOATING

(Firprp——r3) or(rprp——r3)

Add r; to r, giving the sum r;3.

12.6.1.1425 F- “f-minus” FLOATING

(FZ ryrp—— r3) or(r1r2—— 1’3)

Subtract r, from r;, giving r;.

12.6.1.1430 F/ “f-slash” FLOATING

(FZ ryrp—— r3) or(rlrz—— r3)

Divide r; by r,, giving the quotient r;. An ambiguous condition exists if r;, is zero, or the
quotient lies outside of the range of a floating-point number.

12.6.1.1440 FO< “f-zero-less-than” FLOATING

(== flag) (F:r——) or(r—— flag)

flag is true if and only if r is less than zero.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 133

12. FLOATING Word Set Forth 200x / 18.1

12.6.1.1450

12.6.1.1460

12.6.1.1470

FO= “f-zero-equals” FLOATING

(——flag) (F:r——) or(r—— flag)

flag is true if and only if r is equal to zero.

F< “f-less-than” FLOATING

(——flag) (F:rjro——) or(r;ro—— flag)

flag is true if and only if r; is less than r,.

F>D “f-to-d” FLOATING

(-—d) (Fir——)or(r——4d)

d is the double-cell signed-integer equivalent of the integer portion of r. The fractional
portion of ris discarded. An ambiguous condition exists if the integer portion of # cannot
be represented as a double-cell signed integer.

Note: Rounding the floating-point value prior to calling F>D is advised, because F>D rounds

towards zero.

12.6.1.1472 FQ@ “f-fetch” FLOATING
(fraddr——) (F: —— r) or (f-addr—— r)
r is the value stored at f~addr.

12.6.1.1479 FALIGN “f-align” FLOATING
(==
If the data-space pointer is not float aligned, reserve enough data space to make it so.

12.6.1.1483 FALIGNED “f-aligned” FLOATING
(addr —— f-addr)
f-addr is the first float-aligned address greater than or equal to addr.

12.6.1.1492 FCONSTANT “f-constant” FLOATING
(“(spaces)name” ——) (F:r——) or (r “(spaces)name” ——)
Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

134 P“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

name is referred to as an “f-constant”.
name Execution: (——) (F: —— r) or (—— r)
Place r on the floating-point stack.

See: 3.4.1 Parsing, A.12.6.1.1492 FCONSTANT.

12.6.1.1497 FDEPTH “f-depth” FLOATING

(== +n)

+n is the number of values contained on the floating-point stack. If the system has an
environmental restriction of keeping the floating-point numbers on the data stack, +n is
the current number of possible floating-point values contained on the data stack.

12.,6.1.1500 FDROP “f-drop” FLOATING

(For——)or(r——)

Remove r from the floating-point stack.

12.6.1.1510 FDUP “f-dupe” FLOATING

(For——rr)or(r——rr)

Duplicate r.

12.6.1.1552 FLITERAL “f-literal” FLOATING

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (F:r——) or(r——)
Append the run-time semantics given below to the current definition.
Run-time: (F: —— r) or (—— r)
Place r on the floating-point stack.

See: A.12.6.1.1552 FLITERAL.

12.6.1.1555 FLOAT+ “float-plus” FLOATING

(f-addr; —— f-addr,)

Add the size in address units of a floating-point number to f-addr,, giving f-addr,.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 135

12. FLOATING Word Set Forth 200x / 18.1

12.6.1.1556 FLOATS FLOATING

(nj——ny)

n, is the size in address units of n; floating-point numbers.

12.6.1.1558 FLOOR FLOATING

(Firj——ry) or(r;——r2)
Round r; to an integral value using the “round toward negative infinity” rule, giving 7.

See: 12.3.2 Floating-point operations, 12.6.1.1612 FROUND, 12.6.2.1627 FTRUNC.

12,6.1.1562 FMAX “f-max” FLOATING

(Firprp——=r3) or(ryrp——r3)

r3 is the greater of r; and r;.

12,6.1.1565 FMIN “f-min” FLOATING

(Firprp——r3) or(rprp——r3)

r3 is the lesser of r; and r;.

12.6.1.1567 FNEGATE “f-negate” FLOATING

(F:rl—— rz) or(rl—— rz)

r, is the negation of r;.

12.6.1.1600 FOVER “f-over” FLOATING

(Ferpryg——rprpry) or(rpry—— rprarg)

Place a copy of r; on top of the floating-point stack.

12.6.1.1610 FROT “f-rote” FLOATING

(Ferprars——ryrsry) or(rprprs—— ryr3ry)

Rotate the top three floating-point stack entries.

136 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.1.1612 FROUND “f-round” FLOATING

(FZ r;—— r2) OI'(I"]-- r2)
Round r; to an integral value using the “round to nearest” rule, giving r;.

See: 12.3.2 Floating-point operations, 12.6.1.1558 FL.OOR, 12.6.2.1627 FTRUNC.

12.6.1.1620 FSWAP “f-swap” FLOATING

(FZI"]}’Q—— rzl"]) or(r1r2—— r2r])

Exchange the top two floating-point stack items.

12.6.1.1630 FVARIABLE “f-variable” FLOATING

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve 1 FLOATS address units of
data space at a float-aligned address.

name is referred to as an “f-variable”.
name Execution: (—— f-addr)

f-addpr is the address of the data space reserved by FVARIABLE when it created name.
A program is responsible for initializing the contents of the reserved space.

See: 3.4.1 Parsing, A.12.6.1.1630 FVARIABLE.

12.6.1.2143 REPRESENT FLOATING

(c-addru—— nflag; flag,) (F:r——) or (rc-addru—— nflag; flag,)

At c-addr, place the character-string external representation of the significand of the
floating-point number r. Return the decimal-base exponent as n, the sign as flag; and
“valid result” as flag,. The character string shall consist of the ¥ most significant digits
of the significand represented as a decimal fraction with the implied decimal point to the
left of the first digit, and the first digit zero only if all digits are zero. The significand
is rounded to u digits following the “round to nearest” rule; n is adjusted, if necessary,
to correspond to the rounded magnitude of the significand. If flag, is true then r was
in the implementation-defined range of floating-point numbers. If flag; is true then r is
negative.

An ambiguous condition exists if the value of BASE is not decimal ten.

When flag, is false, n and flag; are implementation defined, as are the contents of c-addr.
Under these circumstances, the string at c-addr shall consist of graphic characters.

See: 3.2.1.2 Digit conversion, 6.1.0750 BASE, 12.3.2 Floating-point operations,
A.12.6.1.2143 REPRESENT.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 137

12. FLOATING Word Set Forth 200x / 18.1

12.6.2 Floating-Point extension words

12.6.2.1203

12.6.2.1204

12.6.2.1205

12.6.2.1207

DF'! “d-f-store” FLOATING EXT

(df-addr—-) (F:r——) or (rdf-addr—-)

Store the floating-point number r as a 64-bit IEEE double-precision number at df-addr.
If the significand of the internal representation of r has more precision than the IEEE
double-precision format, it will be rounded using the “round to nearest” rule. An am-
biguous condition exists if the exponent of r is too large to be accommodated in IEEE
double-precision format.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

DF(@ “d-f-fetch” FLOATING EXT

(df-addr——) (F: —— r) or (df-addr—— r)

Fetch the 64-bit IEEE double-precision number stored at df-addr to the floating-point
stack as r in the internal representation. If the IEEE double-precision significand has
more precision than the internal representation it will be rounded to the internal represen-
tation using the “round to nearest” rule. An ambiguous condition exists if the exponent
of the IEEE double-precision representation is too large to be accommodated by the
internal representation.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

DFALIGN “d-f-align” FLOATING EXT

(==

If the data-space pointer is not double-float aligned, reserve enough data space to make
it so.

See: 12.3.1.1 Addresses.

DFALIGNED “d-f-aligned” FLOATING EXT

(addr —— df-addr)
df-addr is the first double-float-aligned address greater than or equal to addr.

See: 12.3.1.1 Addresses.

138

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.2.1207.40 DFFIELD: “d-f-field-colon” FLOATING EXT

(n; “(spaces)name” —— ny)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first double-
float aligned value greater than or equal to n;. n, = offset + 1 double-float.

Create a definition for name with the execution semantics given below.
name Execution: (addr; —— addr,)

Add the offser calculated during the compile-time action to addr; giving the address
addr;.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT

(df-addr; —— df-addr;)

Add the size in address units of a 64-bit IEEE double-precision number to df-addr,,
giving df-addr,.

See: 12.3.1.1 Addresses.

12,6.2.1209 DFLOATS “d-floats” FLOATING EXT

(nj——ny)

n, is the size in address units of n; 64-bit IEEE double-precision numbers.

12.6.2.1415 Fx* “f-star-star” FLOATING EXT

(Firprp——=r3) or(ryrp——r3)

Raise r; to the power r,, giving the product r;.

12.6.2.1427 F. “f-dot” FLOATING EXT

(-——)(Frr—)or(r-—-)

Display, with a trailing space, the top number on the floating-point stack using fixed-
point notation:

(-1 (digits).(digitsO)

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 12.6.1.0558 >FLOAT, A.12.6.2.1427 F .

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 139

12. FLOATING Word Set Forth 200x / 18.1

12.6.2.1471 F>S “FtoS” FLOATING EXT

(-——n) (Fir—)or(r——n)

n is the single-cell signed-integer equivalent of the integer portion of ». The fractional
portion of ris discarded. An ambiguous condition exists if the integer portion of r cannot
be represented as a single-cell signed integer.

Note: Rounding the floating-point value prior to calling F>S is advised, because F'>S rounds
towards zero.

See: 12.6.2.2175 S>F.

12.6.2.1474 FABS “f-abs” FLOATING EXT

(Firj——ry) or(rj——ry)

r, is the absolute value of r;.

12.6.2.1476 FACOS “f-a-cos” FLOATING EXT

(Firj——ry) or(rj——ry)

r; is the principal radian angle whose cosine is r;. An ambiguous condition exists if
| ;| is greater than one.
12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT

(Flr]—— }’2) or(rj—— }’2)

r, is the floating-point value whose hyperbolic cosine is ;. An ambiguous condition
exists if r; is less than one.
12.6.2.1484 FALOG “f-a-log” FLOATING EXT

(FZI"I—— r2) OI'(I"I—— r2)

Raise ten to the power ry, giving r,.

12.6.2.1486 FASIN “f-a-sine” FLOATING EXT

(FZ}’]—— r2) OI'(I"]-- r2)

r, is the principal radian angle whose sine is r;. An ambiguous condition exists if | 7; | is
greater than one.

140 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1

12. FLOATING Word Set

12.6.2.1487 FASINH “f-a-cinch”

(FZ}’]—— r2) OI'(I"]-- r2)

r, is the floating-point value whose hyperbolic sine is r;.

12.6.2.1488 FATAN “f-a-tan”

(Firj——ry) or (rj——ry)

r, is the principal radian angle whose tangent is r;.

12.6.2.1489 FATAN2 “f-a-tan-two”

(Frprp——r3) or (rpro——r3)

FLOATING EXT

FLOATING EXT

FLOATING EXT

r3 is the principal radian angle (between -7 and) whose tangent is r;/r,. A system that
returns false for “~0E OE OE F~" shall return a value (approximating) —7 when r; =
—OE and r; is negative. An ambiguous condition exists if ; and r, are zero.

See: A.12.6.2.1489 FATAN?2.

12.6.2.1491 FATANH “f-a-tan-h”

(FZ}’]—— r2) OI'(I"]-- r2)

FLOATING EXT

r, is the floating-point value whose hyperbolic tangent is ;. An ambiguous condition

exists if r; is outside the range of -1EO to 1EO.

12.6.2.1493 FCOS “f-cos”

(Firp=——=ry) or(rj==r3)

r, is the cosine of the radian angle r;.

12.6.2.1494 FCOSH “f-cosh”

(Firj——ry) or(rj——ry)

r is the hyperbolic cosine of ;.

FLOATING EXT

FLOATING EXT

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 141

12. FLOATING Word Set Forth 200x / 18.1

12.6.2.1513 FE. “f-e-dot” FLOATING EXT

(-——)Y(Fr—)or(r——)

Display, with a trailing space, the top number on the floating-point stack using engineer-
ing notation, where the significand is greater than or equal to 1.0 and less than 1000.0
and the decimal exponent is a multiple of three.

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.
12.6.2.1515 FEXP “f-e-x-p” FLOATING EXT
(Frrj—=ry) or(r;—=r2)
Raise e to the power ry, giving r».
12.6.2.1516 FEXPM1 “f-e-x-p-m-one” FLOATING EXT
(Frrp—=ry) or(r;—=r2)
Raise e to the power r; and subtract one, giving 7.
See: A.12.6.2.1516 FEXPML1.
12.6.2.1517 FFIELD: “f-field-colon” FLOATING EXT

name Execution:

See:

(n; “(spaces)name” —— ny)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first float
aligned value greater than or equal to n;. n, = offset + I float.

Create a definition for name with the execution semantics given below.
(addr; —— addr,)

Add the offset calculated during the compile-time action to addr; giving the address
addr,.

10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

12,6.2.1553 FLN “f-1-n” FLOATING EXT

(Firj—=r2) or(rj——rp)

r, is the natural logarithm of r;. An ambiguous condition exists if 7; is less than or equal
to zero.

142 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.2.1554 FLNP1 “f-1-n-p-one” FLOATING EXT

(FZ}’]—— r2) OI'(I"]-- r2)

r, is the natural logarithm of the quantity r; plus one. An ambiguous condition exists if
r; is less than or equal to negative one.

See: A.12.6.2.1554 FLNP1.

12.6.2.1557 FLOG “f-log” FLOATING EXT

(F:rj—— }’2) OI'(TI—— }’2)

r, is the base-ten logarithm of r;. An ambiguous condition exists if #; is less than or
equal to zero.

12.6.2.1613 FS. “f-s-dot” FLOATING EXT

(-——)Y(Fr—)or(r——)

Display, with a trailing space, the top number on the floating-point stack in scientific
notation: (significand)(exponent) where:

(significand) = [-](digit).(digitsO)
(exponent) := E[-](digits)

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.

12.6.2.1614 FSIN “f-sine” FLOATING EXT

(Firj——ry) or(rj——ry)

r; is the sine of the radian angle r;.

12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT
(Frrp——rpr3) or(rj——rar3)
r, is the sine of the radian angle 7;. r; is the cosine of the radian angle r;.
See: A.12.6.2.1489 FATAN2.
12.6.2.1617 FSINH “f-cinch” FLOATING EXT

(Firj——ry) or(rj——ry)

r, is the hyperbolic sine of r;.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 143

12. FLOATING Word Set Forth 200x / 18.1

12.6.2.1618 FSQRT “f-square-root” FLOATING EXT

(Flr]—— }’2) or(r1—— }’2)

r, is the square root of ;. An ambiguous condition exists if r; is less than zero.

12.6.2.1625 FTAN “f-tan” FLOATING EXT

(Firj——ry) or(rj——ry)

r, is the tangent of the radian angle r;. An ambiguous condition exists if cos(r) is zero.

12.6.2.1626 FTANH “f-tan-h” FLOATING EXT

(Firj——ry) or(rj——ry)

r, is the hyperbolic tangent of r;.

12.6.2.1627 FTRUNC “f-trunc” FLOATING EXT

(FZ ry—— }’2) or(r1—— }’2)
Round r; to an integral value using the “round towards zero” rule, giving r,.

See: 12.3.2 Floating-point operations, 12.6.1.1612 FROUND, 12.6.1.1558 FLOOR.

12.6.2.1628 FVALUE “f-value” FLOATING EXT

(F:r——) (“(spaces)name” ——) or (r “(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to r.

name is referred to as a “f-value”.
name Execution: (F: —— r) or(—— r)

Place r on the floating point stack. The value of r is that given when name was created,
until the phrase “r TO name” is executed, causing a new value of r to be assigned to
name.

TO name Run-time: (F:r——) or(r——)
Assign the value r to name.

See: 3.4.1 Parsing, 6.2.2295 TO

144 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.2.1640 F~ “f-proximate” FLOATING EXT

(——flag) (Firyryrs——) or(r;rar3—— flag)
If r; is positive, flag is true if the absolute value of (r; minus r,) is less than r;.

If r; is zero, flag is true if the implementation-dependent encoding of r; and r, are exactly
identical (positive and negative zero are unequal if they have distinct encodings).

If r; is negative, flag is true if the absolute value of (r; minus r;) is less than the absolute
value of r; times the sum of the absolute values of r; and r;.

See: A.12.6.2.1640 F~.

12.6.2.2035 PRECISION FLOATING EXT

(——u)

Return the number of significant digits currently used by F., FE., or FS. as u.

12,6.2.2175 S>F “s-to-f” FLOATING EXT

(n——) (F:——r)or(n——r)
r is the floating-point value which is nearest to » in the sense of “round to nearest”.

See: 12.6.2.1471 F>S.

12.6.2.2200 SET-PRECISION FLOATING EXT

(u==")
Set the number of significant digits currently used by F., FE., or FS. to u.

12.6.2.2202 SF! “s-f-store” FLOATING EXT

(sf-addr——) (F:r——) or (rsf-addr——)

Store the floating-point number r as a 32-bit IEEE single-precision number at sf-addr. If
the significand of the internal representation of r has more precision than the IEEE single-
precision format, it will be rounded using the “round to nearest” rule. An ambiguous
condition exists if the exponent of r is too large to be accommodated by the IEEE single-
precision format.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 145

12. FLOATING Word Set Forth 200x / 18.1

12.6.2.2203 SF@ “s-f-fetch” FLOATING EXT

(sf-addr——) (F: —— r) or (sf-addr—— r)

Fetch the 32-bit IEEE single-precision number stored at sf-addr to the floating-point
stack as r in the internal representation. If the IEEE single-precision significand has more
precision than the internal representation, it will be rounded to the internal representation
using the “round to nearest” rule. An ambiguous condition exists if the exponent of the
IEEE single-precision representation is too large to be accommodated by the internal
representation.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT
(==
If the data-space pointer is not single-float aligned, reserve enough data space to make it
SO.

See: 12.3.1.1 Addresses.

12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT

(addr —— sf-addr)
sf-addr is the first single-float-aligned address greater than or equal to addr.
See: 12.3.1.1 Addresses.

12.6.2.2206.40 SFFIELD: “s-f-field-colon” FLOATING EXT

(n; “(spaces)name” —— ny)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first single-
float aligned value greater than or equal to n;. n, = offset + I single-float.

Create a definition for name with the execution semantics given below.
name Execution: (addr; —— addr,)

Add the offset calculated during the compile-time action to addr; giving the address
addr;.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

146 1 “#$% & ()*+,-./digits:; <=>7? @ ALPHA [\]"_ *alpha { | } ~ float

Forth 200x / 18.1 12. FLOATING Word Set

12.6.2.2207 SFLOAT+ “s-float-plus” FLOATING EXT

(sf-addr; —— sf-addr,)

Add the size in address units of a 32-bit IEEE single-precision number to sf-addr,, giving
sf-addr,.

See: 12.3.1.1 Addresses.

12.6.2.2208 SFLOATS “s-floats” FLOATING EXT

(nj——ny)
n, is the size in address units of n; 32-bit IEEE single-precision numbers.

See: 12.3.1.1 Addresses.

float V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 147

13. LOCAL Word Set Forth 200x / 18.1

13 The optional Locals word set

13.1 Introduction

13.2 Additional terms and notation

None.

13.3 Additional usage requirements
13.3.1 Locals

A local is a data object whose execution semantics shall return its value, whose scope shall be limited to the
definition in which it is declared, and whose use in a definition shall not preclude reentrancy or recursion.

13.3.2 Environmental queries
Append table 13.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 13.1: Environmental Query Strings
String Value data type Constant? Meaning
#LOCALS n yes maximum number of local variables in a def-
inition

13.3.3 Processing locals

To support the locals word set, a system shall provide a mechanism to receive the messages defined by
(LOCAL) and respond as described here.

During the compilation of a definition after : (colon), : NONAME, or DOES>, a program may begin sending
local identifier messages to the system. The process shall begin when the first message is sent. The process
shall end when the “last local” message is sent. The system shall keep track of the names, order, and
number of identifiers contained in the complete sequence.

13.3.3.1 Compilation semantics

The system, upon receipt of a sequence of local-identifier messages, shall take the following actions at
compile time:

a) Create temporary dictionary entries for each of the identifiers passed to (LOCAL), such that each
identifier will behave as a local. These temporary dictionary entries shall vanish at the end of the defi-
nition, denoted by ; (semicolon), ; CODE, or DOES>. The system need not maintain these identifiers
in the same way it does other dictionary entries as long as they can be found by normal diction-
ary searching processes. Furthermore, if the Search-Order word set is present, local identifiers shall

148 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ locals

Forth 200x / 18.1 13. LOCAL Word Set

b)

)

d)

always be searched before any of the word lists in any definable search order, and none of the Search-
Order words shall change the locals’ privileged position in the search order. Local identifiers may
reside in mass storage.

For each identifier passed to (LOCAL), the system shall generate an appropriate code sequence that
does the following at execution time:

1) Allocate a storage resource adequate to contain the value of a local. The storage shall be
allocated in a way that does not preclude re-entrancy or recursion in the definition using the
local.

2) Initialize the value using the top item on the data stack. If more than one local is declared, the
top item on the stack shall be moved into the first local identified, the next item shall be moved
into the second, and so on.

The storage resource may be the return stack or may be implemented in other ways, such as in
registers. The storage resource shall not be the data stack. Use of locals shall not restrict use of the
data stack before or after the point of declaration.

Arrange that any of the legitimate methods of terminating execution of a definition, specifically ;
(semicolon), ; CODE, DOES> or EXIT, will release the storage resource allocated for the locals, if
any, declared in that definition. ABORT shall release all local storage resources, and CATCH / THROW
(if implemented) shall release such resources for all definitions whose execution is being terminated.

Separate sets of locals may be declared in defining words before DOES> for use by the defining
word, and after DOES> for use by the word defined.

A system implementing the Locals word set shall support the declaration of at least sixteen locals in a
definition.

13.3.3.2 Syntax restrictions

Immediate words in a program may use (LOCAL) to implement syntaxes for local declarations with the
following restrictions:

a)

b)

c)

d)

e)

A program shall not compile any executable code into the current definition between the time
(LOCAL) is executed to identify the first local for that definition and the time of sending the single
required “last local” message;

The position in program source at which the sequence of (LOCAL) messages is sent, referred to
here as the point at which locals are declared, shall not lie within the scope of any control structure;

Locals shall not be declared until values previously placed on the return stack within the definition
have been removed;

After a definition’s locals have been declared, a program may place data on the return stack. How-
ever, if this is done, locals shall not be accessed until those values have been removed from the return
stack;

Words that return execution tokens, such as ’ (tick), [’], or FIND, shall not be used with local
names;

locals

V“#8% & () *+,-./digits: ; <=>?@ALPHA[\]"_“alpha{l} ~ 149

13. LOCAL Word Set Forth 200x / 18.1

f) A program that declares more than sixteen locals in a single definition has an environmental depend-
ency;

g) Locals may be accessed or updated within control structures, including do-loops;
h) Local names shall not be referenced by POSTPONE and [COMPILE].
See: 3.4 The Forth text interpreter.

13.4 Additional documentation requirements
13.4.1 System documentation
13.4.1.1 Implementation-defined options
— maximum number of locals in a definition (13.3.3 Processing locals, 13.6.2.1795 LOCALS |).

13.4.1.2 Ambiguous conditions

executing a named local while in interpretation state (13.6.1.0086 (LOCAL));

[T 2] “[” A,

a local name ends in “:”, , ;

a local name is a single non-alphabetic character;

the text between { : and : } extends over more than one line;

— {: ... :} is used more than once in a word.
13.4.1.3 Other system documentation

— no additional requirements.

13.4.2 Program documentation
13.4.2.1 Environmental dependencies

— declaring more than sixteen locals in a single definition (13.3.3 Processing locals).
13.4.2.2 Other program documentation

— no additional requirements.

13.5 Compliance and labeling
13.5.1 Forth-2012 systems

The phrase “Providing the Locals word set” shall be appended to the label of any Standard System that
provides all of the Locals word set.

The phrase “Providing name(s) from the Locals Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Locals Extensions word set.

The phrase “Providing the Locals Extensions word set” shall be appended to the label of any Standard
System that provides all of the Locals and Locals Extensions word sets.

150 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ locals

Forth 200x / 18.1 13. LOCAL Word Set

13.5.2 Forth-2012 programs

The phrase “Requiring the Locals word set” shall be appended to the label of Standard Programs that
require the system to provide the Locals word set.

The phrase “Requiring name(s) from the Locals Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Locals Extensions word set.

The phrase “Requiring the Locals Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Locals and Locals Extensions word sets.

13.6 Glossary

13.6.1 Locals words

13.6.1.0086 (LOCAL) “paren-local-paren” LOCAL

Interpretation: Interpretation semantics for this word are undefined.
Execution: (c-addru——)

When executed during compilation, (LOCAL) passes a message to the system that has
one of two meanings. If u is non-zero, the message identifies a new local whose defi-
nition name is given by the string of characters identified by c-addr u. If u is zero, the
message is “last local” and c-addr has no significance.

The result of executing (LOCAL) during compilation of a definition is to create a set
of named local identifiers, each of which is a definition name, that only have execution
semantics within the scope of that definition’s source.

local Execution: (—— x)

Push the local’s value, x, onto the stack. The local’s value is initialized as described in
13.3.3 Processing locals and may be changed by preceding the local’s name with TO.
An ambiguous condition exists when local is executed while in interpretation state.

TO local Run-time: (x——)
Assign the value x to the local value local.

Note: This word does not have special compilation semantics in the usual sense because it
provides access to a system capability for use by other user-defined words that do have
them. However, the locals facility as a whole and the sequence of messages passed
defines specific usage rules with semantic implications that are described in detail in
section 13.3.3 Processing locals.

Note: This word is not intended for direct use in a definition to declare that definition’s locals.
It is instead used by system or user compiling words. These compiling words in turn
define their own syntax, and may be used directly in definitions to declare locals. In
this context, the syntax for (LOCAL) is defined in terms of a sequence of compile-time
messages and is described in detail in section 13.3.3 Processing locals.

See: 3.4 The Forth text interpreter and 6.2.2295 TO.

locals V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 151

13. LOCAL Word Set Forth 200x / 18.1

13.6.2 Locals extension words
13.6.2.1795 LOCALS | “locals-bar” LOCAL EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name;” “(spacesyname;” ... “(spaces)name,” “1” ——)

Create up to eight local identifiers by repeatedly skipping leading spaces, parsing name,
and executing 13.6.1.0086 (LOCAL) . The list of locals to be defined is terminated by | .
Append the run-time semantics given below to the current definition.

Run-time: (x,... xox;——)

Initialize up to eight local identifiers as described in 13.6.1.0086 (LOCAL), each of
which takes as its initial value the top stack item, removing it from the stack. Identifier
name; is initialized with x;, identifier name, with x,, etc. When invoked, each local will
return its value. The value of a local may be changed using 6.2.2295 TO.

Note: This word is obsolescent and is included as a concession to existing implementations.

13.6.2.2550 {: “brace-colon” LOCAL EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (i*x “(spaces)ccc :}7——)
Parse ccc according to the following syntax:
{: {arg)* [l (val)*] [-= (out)*] :}
where (arg), (val) and (out) are local names, and i is the number of (arg) names given.
The following ambiguous conditions exist when:
— alocal name ends in “:”, “[”, “~”;
— alocal name is a single non-alphabetic character;
— the text between { : and : } extends over more than one line;
— {: ... :} is used more than once in a word.
Append the run-time semantics below.
Run-time: (x;... x,——)
Create locals for (arg)s and (val)s. (out)s are ignored.

(arg) names are initialized from the data stack, with the top of the stack being assigned
to the right most (arg) name.

(val) names are uninitialized.

(val) and (arg) names have the execution semantics given below.

152 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ locals

Forth 200x / 18.1 13. LOCAL Word Set

name Execution: (—— x)

Place the value currently assigned to name on the stack. An ambiguous condition exists
when name is executed while in interpretation state.

TO name Run-time: (x——)
Set name to the value x.

See: 2.2.5 BNF notation, 6.2.2405 VALUE, 6.2.2295 TO, A.13.6.2.2550 { :.

locals P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 153

14. MEMORY Word Set Forth 200x / 18.1

14 The optional Memory-Allocation word set

14.1 Introduction

14.2 Additional terms and notation

None.

14.3 Additional usage requirements
14.3.3 Allocated regions (14.3.3)

A program may address memory in data space regions made available by ALLOCATE or RESIZE and not
yet released by FREE.

See: 3.3.3 Data space.

14.4 Additional documentation requirements

None.

14.5 Compliance and labeling
14.5.1 Forth-2012 systems

The phrase “Providing the Memory-Allocation word set” shall be appended to the label of any Standard
System that provides all of the Memory-Allocation word set.

The phrase “Providing name(s) from the Memory-Allocation Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Memory-Allocation Extensions word set.

The phrase “Providing the Memory-Allocation Extensions word set” shall be appended to the label of any
Standard System that provides all of the Memory-Allocation and Memory-Allocation Extensions word
sets.

14.5.2 Forth-2012 programs

The phrase “Requiring the Memory-Allocation word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Memory-Allocation word set.

The phrase “Requiring name(s) from the Memory-Allocation Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Memory-Allocation
Extensions word set.

The phrase “Requiring the Memory-Allocation Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Memory-Allocation and Memory-Alloca-
tion Extensions word sets.

154 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ memory

Forth 200x / 18.1 14. MEMORY Word Set

14.6 Glossary

14.6.1 Memory-Allocation words
14.6.1.0707 ALLOCATE MEMORY

(u—— a-addrior)

Allocate u address units of contiguous data space. The data-space pointer is unaffected
by this operation. The initial content of the allocated space is undefined.

If the allocation succeeds, a-addr is the aligned starting address of the allocated space
and ior is zero.

If the operation fails, a-addr does not represent a valid address and ior is the implement-
ation-defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.1605 FREE, 14.6.1.2145 RESIZE.
14.6.1.1605 FREE MEMORY

(a-addr —— ior)

Return the contiguous region of data space indicated by a-addr to the system for later
allocation. a-addr shall indicate a region of data space that was previously obtained by
ALLOCATE or RESIZE. The data-space pointer is unaffected by this operation.

If the operation succeeds, ior is zero. If the operation fails, ior is the implementation-
defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.2145 RESIZE.

14.6.1.2145 RESIZE MEMORY

(a-addr; u —— a-addr, ior)

Change the allocation of the contiguous data space starting at the address a-addr;, previ-
ously allocated by ALLOCATE or RESIZE, to u address units. # may be either larger or
smaller than the current size of the region. The data-space pointer is unaffected by this
operation.

If the operation succeeds, a-addr, is the aligned starting address of u address units of
allocated memory and ior is zero. a-addr, may be, but need not be, the same as a-addr;.
If they are not the same, the values contained in the region at a-addr; are copied to a-
addr,, up to the minimum size of either of the two regions. If they are the same, the
values contained in the region are preserved to the minimum of u or the original size. If
a-addr, is not the same as a-addr;, the region of memory at a-addr; is returned to the
system according to the operation of FREE.

If the operation fails, a-addr, equals a-addr), the region of memory at a-addr, is unaf-
fected, and ior is the implementation-defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE.

memory P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 155

14. MEMORY Word Set Forth 200x / 18.1

14.6.2 Memory-Allocation extension words

None

156 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ memory

Forth 200x / 18.1 15. TOOLS Word Set

15 The optional Programming-Tools word set

15.1 Introduction

This optional word set contains words most often used during the development of applications.

15.2 Additional terms and notation

None.

15.3 Additional usage requirements
15.3.1 Data types

A name token is a single-cell value that identifies a named word.

Append table 15.1 to table 3.1.

Table 15.1: Data types
Symbol Data type Size on stack
nt name token 1 cell
quotation-sys colon definition status implementation dependent

See: A.15.3.1 Name tokens. xcquotations

15.3.2 Colon definition status

The implementation-dependent guotation-sys type contains the data that needs to be saved for the enclosing
colon definition and restored after the end of the quotation. It is used in combination with colon-sys.

15.3.3 The Forth dictionary

A program using the words CODE or ; CODE associated with assembler code has an environmental depend-
ency on that particular instruction set and assembler notation.

Programs using the words EDITOR or ASSEMBLER require the Search Order word set or an equivalent
implementation-defined capability.

See: 3.3 The Forth dictionary.

15.4 Additional documentation requirements
15.4.1 System documentation
15.4.1.1 Implementation-defined options

— ending sequence for input following 15.6.2.0470 ; CODE and 15.6.2.0930 CODE;

— manner of processing input following 15.6.2.0470 ; CODE and 15.6.2.0930 CODE;

tools P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 157

X:quotation

15. TOOLS Word Set Forth 200x / 18.1

— search-order capability for 15.6.2.1300 EDITOR and 15.6.2.0740 ASSEMBLER (15.3.3 The Forth
dictionary);

— source and format of display by 15.6.1.2194 SEE.
15.4.1.2 Ambiguous conditions
— deleting the compilation word-list (15.6.2.1580 FORGET);
— fewer than u + 1 items on control-flow stack (15.6.2.1015 CS-PICK, 15.6.2.1020 CS-ROLL);
— name can’t be found (15.6.2.1580 FORGET, 15.6.2.2264 SYNONYM);
— name not defined via 6.1.1000 CREATE (15.6.2.0470 ; CODE);
— 6.1.2033 POSTPONE applied to 15.6.2.2532 [IF];

— reaching the end of the input source before matching 15.6.2.2531 [ELSE] or 15.6.2.2533 [THEN]
(15.6.2.2532 [IF]);

— removing a needed definition (15.6.2.1580 FORGET);
— 6.1.1710 TMMEDIATE is applied to a word defined by 15.6.2.2264 SYNONYM;
— 15.6.2.1940 NR> is used with data not stored by 15.6.2.1908 N>R;

— adding to or deleting from the wordlist during the execution of 15.6.2.2297 TRAVERSE-WORDLIST

The compilation semantics of 15.6.2.0470 ; CODE or 6.1.0460 ; used within a quotation
([:... ;D).

15.4.1.3 Other system documentation

— no additional requirements.

15.4.2 Program documentation
15.4.2.1 Environmental dependencies

— using the words 15.6.2.0470 ; CODE or 15.6.2.0930 CODE.
15.4.2.2 Other program documentation

— no additional requirements.

15.5 Compliance and labeling
15.5.1 Forth-2012 systems

The phrase “Providing the Programming-Tools word set” shall be appended to the label of any Standard
System that provides all of the Programming-Tools word set.

The phrase “Providing name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Programming-Tools Extensions word set.

158 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ tools

Forth 200x / 18.1 15. TOOLS Word Set

The phrase “Providing the Programming-Tools Extensions word set” shall be appended to the label of any
Standard System that provides all of the Programming-Tools and Programming-Tools Extensions word
sets.

15.5.2 Forth-2012 programs

The phrase “Requiring the Programming-Tools word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Programming-Tools word set.

The phrase “Requiring name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Programming-Tools
Extensions word set.

The phrase “Requiring the Programming-Tools Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Programming-Tools and Programming-
Tools Extensions word sets.

15.6 Glossary

15.6.1 Programming-Tools words

15.6.1.0220 .S “dot-s” TOOLS
(-

Copy and display the values currently on the data stack. The format of the display is
implementation-dependent.

.S may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.0220 . S.

15.6.1.0600 2 “question” TOOLS
(a-addr——)
Display the value stored at a-addr.

? may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

15.6.1.1280 DUMP TOOLS

(addru—-)

Display the contents of u consecutive addresses starting at addr. The format of the
display is implementation dependent.

tools P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 159

X:quotation

15. TOOLS Word Set Forth 200x / 18.1

15.6.1.2194

15.6.1.2465

DUMP may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

SEE TOOLS

(“(spaces)name” ——)

Display a human-readable representation of the named word’s definition. The source
of the representation (object-code decompilation, source block, etc.) and the particular
form of the display is implementation defined.

SEE may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.2194 SEE.

WORDS TOOLS

(—)
List the definition names in the first word list of the search order. The format of the
display is implementation-dependent.

WORDS may be implemented using pictured numeric output words. Consequently, its
use may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.2465 WORDS.

15.6.2 Programming-Tools extension words

15.6.2.0470

; CODE “semicolon-code” TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: colon-sys ——)

Append the run-time semantics below to the current definition. End the current defi-
nition, allow it to be found in the dictionary, and enter interpretation state, consuming
colon-sys.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in
an implementation-defined manner, generating the corresponding machine code. The
process continues, refilling the input buffer as needed, until an implementation-defined
ending sequence is processed.

An ambiguous condition exists if the compilation semantics of ; CODE is preformed
inside a quotation.

160

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ tools

Forth 200x / 18.1 15. TOOLS Word Set

Run-time: (——) (R: nest-sys——)

Replace the execution semantics of the most recent definition with the name execution
semantics given below. Return control to the calling definition specified by nest-sys. An
ambiguous condition exists if the most recent definition was not defined with CREATE
or a user-defined word that calls CREATE.

name Execution: (i*x—— j*x)
Perform the machine code sequence that was generated following ; CODE.

See: 6.1.1250 DOES>, A.15.6.2.0470 ; CODE.

15.6.2.— | “semi-bracket” TOOLS EXT
x:quotations

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: quotation-sys colon-sys ——)

Ends the current nested definition, and resumes compilation to the previous (containing)
current definition. It appends the following run-time action to the (containing) current
definition.

Run-time: (—— xt)
xt is the execution token of the nested definition.

See: 15.6.2.0 [:, A.15.6.2.0 [:.

15.6.2.0702 AHEAD TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved (e.g., by THEN).

Run-time: (——)
Continue execution at the location specified by the resolution of orig.
15.6.2.0740 ASSEMBLER TOOLS EXT
(==
Replace the first word list in the search order with the ASSEMBLER word list.

See: 16 The optional Search-Order word set.

tools V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 161

x:quotations

15. TOOLS Word Set Forth 200x / 18.1

15.6.2.0830 BYE TOOLS EXT
(==
Return control to the host operating system, if any.

15.6.2.0930 CODE TOOLS EXT
(“(spaces)name” ——)

name Execution:

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, called a “code definition”, with the execution semantics defined below.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in
an implementation-defined manner, generating the corresponding machine code. The
process continues, refilling the input buffer as needed, until an implementation-defined
ending sequence is processed.

(i%x——j*x)

Execute the machine code sequence that was generated following CODE.

See: 3.4.1 Parsing, A.15.6.2.0930 CODE.
15.6.2.1015 CS-PICK “c-s-pick” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.
Execution: (C:dest,... origyg|desty—— dest, ... origg|destydest,) (S:u——)
Remove u. Copy dest, to the top of the control-flow stack. An ambiguous condition
exists if there are less than u+1 items, each of which shall be an orig or dest, on the
control-flow stack before CS—PICK is executed.
If the control-flow stack is implemented using the data stack, u shall be the topmost item
on the data stack.
See: A.15.6.2.1015 CS-PICK.
15.6.2.1020 CS-ROLL “c-s-roll” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.
Execution: (C: orig, | dest, orig,.; | dest,.; ... origg | desty —— orig,.; | dest,.; ... origy | dest

orig, ldest,) (S:u——)

Remove u. Rotate u+1 elements on top of the control-flow stack so that orig, | dest, is
on top of the control-flow stack. An ambiguous condition exists if there are less than u+1
items, each of which shall be an orig or dest, on the control-flow stack before CS—-ROLL
is executed.

162 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ tools

Forth 200x / 18.1 15. TOOLS Word Set

If the control-flow stack is implemented using the data stack, u shall be the topmost item
on the data stack.

See: A.15.6.2.1020 CS-ROLL.

15.6.2.1300 EDITOR TOOLS EXT
(——))
Replace the first word list in the search order with the EDITOR word list.

See: 16 The optional Search-Order word set.

15.6.2.1580 FORGET TOOLS EXT

(“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Find name, then delete
name from the dictionary along with all words added to the dictionary after name. An
ambiguous condition exists if name cannot be found.

If the Search-Order word set is present, FORGET searches the compilation word list. An
ambiguous condition exists if the compilation word list is deleted.

An ambiguous condition exists if FORGET removes a word required for correct execu-
tion.

Note: This word is obsolescent and is included as a concession to existing implementations.

See: 3.4.1 Parsing, A.15.6.2.1580 FORGET.
15.6.2.1908 N>R “n-to-r”’ TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.
Execution: (i*n+n——) (R: —— j*x +n)

Remove n+1 items from the data stack and store them for later retrieval by NR>. The
return stack may be used to store the data. Until this data has been retrieved by NR>:

— this data will not be overwritten by a subsequent invocation of N>R and

— a program may not access data placed on the return stack before the invocation of
N>R.

See: 15.6.2.1940 NR>, A.15.6.2.1908 N>R.
15.6.2.1909.10 NAME>COMPILE “name-to-compile” TOOLS EXT

(nt—— xxt)

tools P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 163

15. TOOLS Word Set Forth 200x / 18.1

x xt represents the compilation semantics of the word nt. The returned xt has the stack
effect (i*x x —— j*x). Executing xt consumes x and performs the compilation
semantics of the word represented by nt.

See: A.15.6.2.1909.10 NAME>COMPILE, 15.6.2.2297 TRAVERSE-WORDLIST.
15.6.2.1909.20 NAME>INTERPRET “name-to-interpret” TOOLS EXT
(nt—— xt10)
xt represents the interpretation semantics of the word nt. If nt has no interpretation
semantics, NAME>INTERPRET returns 0.
Note: This standard does not define the interpretation semantics of some words, but systems
are allowed to do so.
See: 15.6.2.2297 TRAVERSE-WORDLIST.
15.6.2.1909.40 NAME>STRING “name-to-string” TOOLS EXT
(nt—— c-addru)
NAME>STRING returns the name of the word nf in the character string c-addr u. The
case of the characters in the string is implementation-dependent. The buffer containing
c-addr u may be transient and valid until the next invocation of NAME>STRING. A
program shall not write into the buffer containing the resulting string.
See: 15.6.2.2297 TRAVERSE-WORDLIST.
15.6.2.1940 NR> “n-r-from” TOOLS EXT

Interpretation: Interpretation semantics for this word are undefined.

Execution: (—— i*x+n) (Rij*x+n——)

Retrieve the items previously stored by an invocation of N>R. n is the number of items
placed on the data stack. It is an ambiguous condition if NR> is used with data not stored
by N>R.

See: 15.6.2.1908 N>R, A.15.6.2.1908 N>R.

15.6.2.2250 STATE TOOLS EXT

(—— a-addr)
Extend the semantics of 6.1.2250 STATE to allow ; CODE to change the value in STATE.
A program shall not directly alter the contents of STATE.

See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ; , 6.1.0670 ABORT,

6.1.2050 QUIT, 6.1.2250 STATE, 6.1.2500 [, 6.1.2540], 6.2.0455 : NONAME,
15.6.2.0470 ; CODE.

164

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ tools

Forth 200x / 18.1 15. TOOLS Word Set

15.6.2.2264 SYNONYM TOOLS EXT

(“(spaces)newname” “(spaces)oldname” ——)

For both strings skip leading space delimiters. Parse newname and oldname delimited
by a space. Create a definition for newname with the semantics defined below. Newname
may be the same as oldname; when looking up oldname, newname shall not be found.

An ambiguous conditions exists if oldname can not be found or IMMEDIATE is applied
to newname.

newname interpretation: (i *x—— j*x)
Perform the interpretation semantics of oldname.

newname compilation: (i*x—— j*x)
Perform the compilation semantics of oldname.

See: 6.1.1710 IMMEDIATE.

15.6.2.2297 TRAVERSE-WORDLIST TOOLS EXT
(i*xxtwid—— j*x)

Remove wid and xt from the stack. Execute xt once for every word in the wordlist wid,
passing the name token nt of the word to xt, until the wordlist is exhausted or until xz
returns false.

The invoked xt has the stack effect (k *x nt —— [*x flag) .

If flag is true, TRAVERSE-WORDLIST will continue with the next name, otherwise it
will return. TRAVERSE-WORDLIST does not put any items other than st on the stack
when calling xt, so that xf can access and modify the rest of the stack.

TRAVERSE-WORDLIST may visit words in any order, with one exception: words with
the same name are called in the order newest-to-oldest (possibly with other words in
between).

An ambiguous condition exists if words are added to or deleted from the wordlist wid
during the execution of TRAVERSE-WORDLIST.

See: A.15.6.2.2297 TRAVERSE-WORDLIST, 15.6.2.1909.40 NAME>STRING,
15.6.2.1909.20 NAME>INTERPRET, 15.6.2.1909.10 NAME>COMPILE.

15.6.2— [: “bracket-colon” TOOLS EXT xaquotations
x:quotations

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (C: —— quotation-sys colon-sys)

Suspends compiling to the current definition, starts a new nested definition with execu-
tion token xt, and compilation continues with this nested definition.

tools P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 165

15. TOOLS Word Set Forth 200x / 18.1

Locals may be defined in the nested definition. An ambiguous condition exists if a name
is used that satisfies the following constraints:

— It is not the name of a currently visible local of the current quotation;

— Itis the name of a local that was visible right before the start of the present quotation
or any of the containing quotations.

See: 15.6.2.0 ; 1, A.15.6.2.0 [:.

15.6.2.2530.30 [DEFINED] “bracket-defined” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (“(spaces)name ...” —— flag)

Skip leading space delimiters. Parse name delimited by a space. Return a true flag if
name is the name of a word that can be found (according to the rules in the system’s
FIND); otherwise return a false flag. [DEFINED] is an immediate word.

15.6.2.2531 [ELSE] “bracket-else” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (“(spacesyname ...” ——)

Skipping leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [IF] ... [THEN] and [IF] ... [ELSE] ...
[THEN], until the word [THEN] has been parsed and discarded. If the parse area
becomes exhausted, it is refilled as with REFILL. [ELSE] is an immediate word.

See: 3.4.1 Parsing, A.15.6.2.2531 [ELSE].

15.6.2.2532 [IF] “bracket-if” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (flag | flag “(spaces)name ...” ——)

If flag is true, do nothing. Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrences of [IF] ... [THEN]
and [IF] ... [ELSE] ... [THEN], until either the word [ELSE] or the word
[THEN] has been parsed and discarded. If the parse area becomes exhausted, it is
refilled as with REFILL. [IF] is an immediate word.

An ambiguous condition exists if [IF] is POSTPONEJ, or if the end of the input buffer
is reached and cannot be refilled before the terminating [ELSE] or [THEN] is parsed.

See: 3.4.1 Parsing, A.15.6.2.2532 [IF].

166 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ tools

Forth 200x / 18.1 15. TOOLS Word Set

15.6.2.2533 [THEN] “bracket-then” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (——)
Does nothing. [THEN] is an immediate word.

See: A.15.6.2.2533 [THEN].

15.6.2.2534 [UNDEFINED] “bracket-undefined” TOOLS EXT

Compilation: Perform the execution semantics given below.
Execution: (“(spaces)name ...” —— flag)

Skip leading space delimiters. Parse name delimited by a space. Return a false flag if
name is the name of a word that can be found (according to the rules in the system’s
FIND); otherwise return a true flag. [UNDEFINED] is an immediate word.

tools P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 167

16. SEARCH Word Set Forth 200x / 18.1

16 The optional Search-Order word set

16.1 Introduction

16.2 Additional terms and notation

compilation word list: The word list into which new definition names are placed.

search order: A list of word lists specifying the order in which the dictionary will be searched.

16.3 Additional usage requirements
16.3.1 Data types

Word list identifiers are implementation-dependent single-cell values that identify word lists.

Append table 16.1 to table 3.1.

Table 16.1: Data types
Symbol Data type Size on stack
wid word list identifiers 1 cell

See: 3.1 Data types, 3.4.2 Finding definition names, 3.4 The Forth text interpreter.

16.3.2 Environmental queries
Append table 16.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 16.2: Environmental Query Strings
String Value data type Constant? Meaning
WORDLISTS n yes maximum number of word lists usable in the
search order

16.3.3 Finding definition names

When searching a word list for a definition name, the system shall search each word list from its last
definition to its first. The search may encompass only a single word list, as with SEARCH-WORDLIST, or
all the word lists in the search order, as with the text interpreter and FIND.

Changing the search order shall only affect the subsequent finding of definition names in the dictionary. A
system with the Search-Order word set shall allow at least eight word lists in the search order.

An ambiguous condition exists if a program changes the compilation word list during the compilation of
a definition or before modification of the behavior of the most recently compiled definition with ; CODE,
DOES>, or IMMEDIATE.

168 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ search

Forth 200x / 18.1 16. SEARCH Word Set

A program that requires more than eight word lists in the search order has an environmental dependency.
See: 3.4.2 Finding definition names.
16.3.4 Contiguous regions

The regions of data space produced by the operations described in 3.3.3.2 Contiguous regions may be
non-contiguous if WORDLIST is executed between allocations.

16.4 Additional documentation requirements

16.4.1 System documentation
16.4.1.1 Implementation-defined options

— maximum number of word lists in the search order (16.3.3 Finding definition names, 16.6.1.2197
SET-ORDER);

— minimum search order (16.6.1.2197 SET-ORDER, 16.6.2.1965 ONLY).
16.4.1.2 Ambiguous conditions
— changing the compilation word list (16.3.3 Finding definition names);
— search order empty (16.6.2.2037 PREVIOUS);
— too many word lists in search order (16.6.2.0715 ALSO).
16.4.1.3 Other system documentation
— no additional requirements.
16.4.2 Program documentation
16.4.2.1 Environmental dependencies
— requiring more than eight word-lists in the search order (16.3.3 Finding definition names).
16.4.2.2 Other program documentation

— no additional requirements.

16.5 Compliance and labeling

16.5.1 Forth-2012 systems

The phrase “Providing the Search-Order word set” shall be appended to the label of any Standard System
that provides all of the Search-Order word set.

The phrase “Providing name(s) from the Search-Order Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Search-Order Extensions word set.

The phrase “Providing the Search-Order Extensions word set” shall be appended to the label of any Stand-
ard System that provides all of the Search-Order and Search-Order Extensions word sets.

search P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 169

16. SEARCH Word Set Forth 200x / 18.1

16.5.2 Forth-2012 programs

The phrase “Requiring the Search-Order word set” shall be appended to the label of Standard Programs
that require the system to provide the Search-Order word set.

The phrase “Requiring name(s) from the Search-Order Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the Search-Order Extensions word set.

The phrase “Requiring the Search-Order Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Search-Order and Search-Order Extensions word
sets.

16.6 Glossary

16.6.1 Search-Order words

16.6.1.1180 DEFINITIONS SEARCH
(-

Make the compilation word list the same as the first word list in the search order. Speci-
fies that the names of subsequent definitions will be placed in the compilation word list.
Subsequent changes in the search order will not affect the compilation word list.

See: 16.3.3 Finding definition names.

16.6.1.1550 FIND SEARCH

Extend the semantics of 6.1.1550 F IND to be:
(c-addr —— c-addr 0 | xt1 | xt-1)

Find the definition named in the counted string at c-addr. If the definition is not found
after searching all the word lists in the search order, return c-addr and zero. If the defini-
tion is found, return xz. If the definition is immediate, also return one (/); otherwise also
return minus-one (-/). For a given string, the values returned by FIND while compiling
may differ from those returned while not compiling.

See: 3.4.2 Finding definition names, 6.1.0070 ', 6.1.1550 FIND, 6.1.2033 POSTPONE,
6.1.2510 [’].

16.6.1.1595 FORTH-WORDLIST SEARCH

(—— wid)

Return wid, the identifier of the word list that includes all standard words provided by
the implementation. This word list is initially the compilation word list and is part of the
initial search order.

170 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ search

Forth 200x / 18.1 16. SEARCH Word Set

16.6.1.1643

16.6.1.1647

16.6.1.2192

GET-CURRENT SEARCH

(—— wid)

Return wid, the identifier of the compilation word list.

GET-ORDER SEARCH

(—— wid,... wid;n)

Returns the number of word lists # in the search order and the word list identifiers wid,,
. wid; identifying these word lists. wid; identifies the word list that is searched first,
and wid,, the word list that is searched last. The search order is unaffected.

SEARCH-WORDLIST SEARCH

(c-addruwid—— 0 | xt1 | xt-1)

Find the definition identified by the string c-addr u in the word list identified by wid.
If the definition is not found, return zero. If the definition is found, return its execution
token xt and one (/) if the definition is immediate, minus-one (-/) otherwise.

See: A.16.6.1.2192 SEARCH-WORDLIST.

16.6.1.2195 SET-CURRENT SEARCH
(wid ——)
Set the compilation word list to the word list identified by wid.

16.6.1.2197 SET-ORDER SEARCH
(wid, ... widjn——)
Set the search order to the word lists identified by wid,, ... wid;. Subsequently, word list
wid; will be searched first, and word list wid,, searched last. If n is zero, empty the search
order. If n is minus one, set the search order to the implementation-defined minimum
search order. The minimum search order shall include the words FORTH-WORDLIST
and SET—-ORDER. A system shall allow 7 to be at least eight.

16.6.1.2460 WORDLIST SEARCH
(—— wid)
Create a new empty word list, returning its word list identifier wid. The new word list
may be returned from a pool of preallocated word lists or may be dynamically allocated
in data space. A system shall allow the creation of at least 8 new word lists in addition
to any provided as part of the system.

search P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 171

16. SEARCH Word Set Forth 200x / 18.1

16.6.2 Search-Order extension words

16.6.2.0715

16.6.2.1590

16.6.2.1965

16.6.2.1985

ALSO SEARCH EXT
(-
Transform the search order consisting of wid,, ... wid,, wid; (Where wid; is searched

first) into wid,,, ... wid,, wid;, wid;. An ambiguous condition exists if there are too many
word lists in the search order.

FORTH SEARCH EXT
(--))
Transform the search order consisting of wid,, ... wid,, wid; (where wid; is searched
first) into wid,,, ... widy, Widporra-worprrsT

ONLY SEARCH EXT
(-

Set the search order to the implementation-defined minimum search order. The minimum
search order shall include the words FORTH-WORDLIST and SET—ORDER.

ORDER SEARCH EXT

(==
Display the word lists in the search order in their search order sequence, from first

searched to last searched. Also display the word list into which new definitions will
be placed. The display format is implementation dependent.

ORDER may be implemented using pictured numeric output words. Consequently, its
use may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

16.6.2.2037 PREVIOUS SEARCH EXT
(-
Transform the search order consisting of wid,,, ... wid,, wid; (where wid; is searched
first) into wid,, ... wid,. An ambiguous condition exists if the search order was empty
before PREVIOUS was executed.

172 P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha {1} ~ search

Forth 200x / 18.1 17. STRING Word Set

17 The optional String word set

17.1 Introduction

17.2 Additional terms and notation

None.

17.3 Additional usage requirements

None.

17.4 Additional documentation requirements

17.4.1 System documentation

17.4.1.1 Implementation-defined options
— no additional options.

17.4.1.2 Ambiguous conditions

The substitution cannot be created (REPLACES);

The name of a substitution contains the ‘%’ delimiter character (REPLACES);

Result of a substitution is too long to fit into the given buffer (SUBSTITUTE and UNESCAPE);

Source and destination buffers for SUBSTITUTE are the same.

17.4.1.3 Other system documentation
— no additional requirements.

17.4.2 Program documentation

17.4.2.1 Environmental dependencies
— no additional dependencies.

17.4.2.2 Other program documentation

— no additional requirements.

17.5 Compliance and labeling

17.5.1 Forth-2012 systems

The phrase “Providing the String word set” shall be appended to the label of any Standard System that
provides all of the String word set.

string P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 173

17. STRING Word Set Forth 200x / 18.1

The phrase “Providing name(s) from the String Extensions word set” shall be appended to the label of any
Standard System that provides portions of the String Extensions word set.

The phrase “Providing the String Extensions word set” shall be appended to the label of any Standard
System that provides all of the String and String Extensions word sets.

17.5.2 Forth-2012 programs

The phrase “Requiring the String word set” shall be appended to the label of Standard Programs that require
the system to provide the String word set.

The phrase “Requiring name(s) from the String Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the String Extensions word set.

The phrase “Requiring the String Extensions word set” shall be appended to the label of Standard Programs

that require the system to provide all of the String and String Extensions word sets.

17.6 Glossary

17.6.1 String words
17.6.1.0170 -TRAILING “dash-trailing” STRING

(c-addr u; —— c-addr u,)

If u; is greater than zero, u, is equal to u; less the number of spaces at the end of the
character string specified by c-addr u;. If u; is zero or the entire string consists of spaces,
Uy 18 zZero.

17.6.1.0245 /STRING “slash-string” STRING

(c-addr; u; n —— c-addr; uy)

Adjust the character string at c-addr; by n characters. The resulting character string,
specified by c-addr, u,, begins at c-addr; plus n characters and is u; minus n characters
long.

See: A.17.6.1.0245 /STRING.

17.6.1.0780 BLANK STRING

(c-addru——)

If u is greater than zero, store the character value for space in u consecutive character
positions beginning at c-addr.

174 1“#$% & ()*+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ string

Forth 200x / 18.1 17. STRING Word Set

17.6.1.0910 CMOVE “c-move”’ STRING

(c-addr; c-addr, u ——)

If u is greater than zero, copy u consecutive characters from the data space starting at c-
addr to that starting at c-addr,, proceeding character-by-character from lower addresses
to higher addresses.

See: 17.6.1.0920 CMOVE>, A.17.6.1.0910 CMOVE.

17.6.1.0920 CMOVE> “c-move-up” STRING

(c-addr; c-addryu——)

If u is greater than zero, copy u consecutive characters from the data space starting at
c-addr; to that starting at c-addr,, proceeding character-by-character from higher ad-
dresses to lower addresses.

See: 17.6.1.0910 CMOVE, A.17.6.1.0920 CMOVE>.

17.6.1.0935 COMPARE STRING

(c-addr; u; c-addry uy —— n)

Compare the string specified by c-addr; u; to the string specified by c-addr, u,. The
strings are compared, beginning at the given addresses, character by character, up to the
length of the shorter string or until a difference is found. If the two strings are identical,
n is zero. If the two strings are identical up to the length of the shorter string, » is minus-
one (-1) if u; is less than u, and one (1) otherwise. If the two strings are not identical up
to the length of the shorter string, n is minus-one (-1) if the first non-matching character
in the string specified by c-addr; u; has a lesser numeric value than the corresponding
character in the string specified by c-addr, u, and one (1) otherwise.

17.6.1.2191 SEARCH STRING

(c-addr; uj c-addr; u, —— c-addr; us flag)

Search the string specified by c-addr; u; for the string specified by c-addr; u,. If flag is
true, a match was found at c-addr; with u; characters remaining. If flag is false there was
no match and c-addr; is c-addr; and u3 is u;.

17.6.1.2212 SLITERAL STRING

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (c-addr;u—-)

Append the run-time semantics given below to the current definition.

string P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 175

17. STRING Word Set Forth 200x / 18.1

Run-time: (—— c-addr, u)

Return c-addr, u describing a string consisting of the characters specified by c-addr; u
during compilation. A program shall not alter the returned string.

See: A.17.6.1.2212 SLITERAL.

17.6.2 String extension words

17.6.2.2141 REPLACES STRING EXT

(c-addr; u; c-addry uy —)

Set the string c-addr; u; as the text to substitute for the substitution named by c-addr,
u,. If the substitution does not exist it is created. The program may then reuse the buffer
c-addr; u; without affecting the definition of the substitution.

Ambiguous conditions occur as follows:
— The substitution cannot be created;
— The name of a substitution contains the ‘%’ delimiter character.

REPLACES may allot data space and create a definition. This breaks the contiguity of
the current region and is not allowed during compilation of a colon definition

See: 3.3.3.2 Contiguous regions, 3.4.5 Compilation, 17.6.2.2255 SUBSTITUTE.

17.6.2.2255 SUBSTITUTE STRING EXT

(c-addr; u; c-addry uy —— c-addr, uz n)

Perform substitution on the string c-addr; u; placing the result at string c-addr, us, where
u3 is the length of the resulting string. An error occurs if the resulting string will not fit
into c-addr, u, or if c-addr, is the same as c-addr;. The return value n is positive or
0 on success and indicates the number of substitutions made. A negative value for n
indicates that an error occurred, leaving c-addr, u; undefined. Negative values of n are
implementation defined except for values in table 9.1 THROW code assignments.

Substitution occurs left to right from the start of c-addr; in one pass and is non-recursive.

When text of a potential substitution name, surrounded by ‘%’ (ASCII $25) delimiters is
encountered by SUBSTITUTE, the following occurs:

a) If the name is null, a single delimiter character is passed to the output, i.e., $% is
replaced by %. The current number of substitutions is not changed.

b) If the text is a valid substitution name acceptable to 17.6.2.2141 REPLACES, the
leading and trailing delimiter characters and the enclosed substitution name are
replaced by the substitution text. The current number of substitutions is incremented.

176

V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ string

Forth 200x / 18.1 17. STRING Word Set

c) If the text is not a valid substitution name, the name with leading and trailing
delimiters is passed unchanged to the output. The current number of substitutions
is not changed.

d) Parsing of the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is passed unchanged to the output.

See: 17.6.2.2141 REPLACES, 17.6.2.2375 UNESCAPE, A.17.6.2.2255 SUBSTITUTE.

17.6.2.2375 UNESCAPE STRING EXT

(c-addr; u; c-addry —— c-addr; u,)

Replace each ‘%’ character in the input string c-addr; u; by two ‘%’ characters. The
output is represented by c-addr, u,. The buffer at c-addr, shall be big enough to hold the
unescaped string. An ambiguous condition occurs if the resulting string will not fit into
the destination buffer (c-addr,).

See: 17.6.2.2255 SURSTITUTE.

string P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 177

18. XCHAR Word Set Forth 200x / 18.1

18 The optional Extended-Character word set

18.1 Introduction

This word set deals with variable width character encodings. It also works with fixed width encodings.

Since the standard specifies ASCII encoding for characters, only ASCII-compatible encodings may be
used. Because ASCII compatibility has so many benefits, most encodings actually are ASCII compatible.
The characters beyond the ASCII encoding are called “extended characters” (xchars).

All words dealing with strings shall handle xchars when the xchar word set is present. This includes
dictionary definitions. White space parsing does not have to treat code points greater than $20 as white
space.

18.2 Additional terms and notation
18.2.1 Definition of Terms

code point: A member of an extended character set.
18.2.2 Parsed-text notation

Append table 18.1 to table 2.1.

Table 18.1: Parsed text abbreviations
Abbreviation Description
(xchar) the delimiting extended character

See: 2.2.3 Parsed-text notation.

18.3 Additional usage requirements

18.3.1 Data types
Append table 18.2 to table 3.1.

Table 18.2: Data Types

Symbol Data type Size on stack
pchar primitive character 1 cell
xchar extended character 1 cell
xc-addr xchar-aligned address 1 cell

See: 3.1 Data types.

178 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ xchar

Forth 200x / 18.1 18. XCHAR Word Set

18.3.1.1 Extended Characters

An extended character (xchar) is the code point of a character within an extended character set; on the stack
it is a subset of u. Extended characters are stored in memory encoded as one or more primitive characters
(pchars).

18.3.2 Environmental queries

Append table 18.3 to table 3.5.

Table 18.3: Environmental Query Strings

String Value data type Constant? Meaning

XCHAR-ENCODING c-addr u no Returns a printable ASCII string that
represents the encoding, and use the
preferred MIME name (if any) or the name in
the IANA character-set regi ster' (RFC-1700)
such as “ISO-LATIN-1" or “UTF-87,
with the exception of “ASCII”, where the
alias “ASCII” is preferred.

MAX-XCHAR u no Maximal value for xchar

XCHAR-MAXMEM u no Maximal memory consumed by an xchar in
address units

'http://www.iana.org/assignments/character-sets

See: 3.2.6 Environmental queries.

18.3.3 Common encodings

Input and files are often encoded iso—latin—1 or utf-8. The encoding depends on settings of the computer
system such as the LANG environment variable on Unix. You can use the system consistently only when
you do not change the encoding, or only use the ASCII subset. The typical practice in environments
requiring more than one encoding is that the base system is ASCII only, and the character set is then
extended to specify the required encoding.

18.3.4 The Forth text interpreter

In section 3.4.1.3 Text interpreter input number conversion, (cnum) should be redefined to be:

(cnum) the number is the value of (xchar)

18.3.5 Input and Output

10 words such as KEY, EMIT, TYPE, READ-FILE, READ-LINE, WRITE-FILE, and WRITE-LINE
operate on pchars. Therefore, it is possible that these words read or write incomplete xchars, which
are completed in the next consecutive operation(s). The IO system shall combine these pchars into a
complete xchars on output, or split an xchars into pchars on input, and shall not throw a “malformed
xchars” exception when the combination of these pchars form a valid xchars. —-TRAILING—GARBAGE
can be used to process an incomplete xchars at the end of such an IO operation.

xchar P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 179

http://www.iana.org/assignments/character-sets

18. XCHAR Word Set Forth 200x / 18.1

ACCEPT as input editor may be aware of xchars to provide comfort like backspace or cursor movement.

18.4 Additional documentation requirements

18.4.1 System documentation
18.4.1.1 Implementation-defined options

Since Unicode input and display poses a number of challenges like input method editors for different
languages, left-to-right and right-to-left writing, and most fonts contain only a subset of Unicode glyphs,
systems should document their capabilities. File IO and in-memory string handling should work transparently
with xchars.

18.4.1.2 Ambiguous conditions
— the data in memory does not encode a valid xchar (18.6.1.2486.50 X-SIZE);
— the xchars value is outside the range of allowed code points of the current character set used;
— words improperly used outside 6.1.0490 <# and 6.1.0040 #> (18.6.2.2488.2(0 XHOLD).
18.4.1.3 Other system documentation

— no additional requirements.

18.4.2 Program documentation

— no additional requirements.

18.5 Compliance and labeling
18.5.1 Forth-2012 systems

The phrase “Providing the Extended-Character word set” shall be appended to the label of any Standard
System that provides all of the Extended-Character word set.

The phrase “Providing name(s) from the Extended-Character Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Extended-Character Extensions word set.

The phrase “Providing the Extended-Character Extensions word set” shall be appended to the label of any
Standard System that provides all of the Extended-Character and Extended-Character Extensions word
sets.

18.5.2 Forth-2012 programs

The phrase “Requiring the Extended-Character word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Extended-Character word set.

The phrase “Requiring name(s) from the Extended-Character Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Extended-Character
Extensions word set.

180 V“#8% & () *+,-./digits: ; <=>? @ ALPHA[\]"_“alpha{l} ~ xchar

Forth 200x / 18.1 18. XCHAR Word Set

The phrase “Requiring the Extended-Character Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Extended-Character Exception and Extended-
Character Extensions word sets.

18.6 Glossary

18.6.1 Extended-Character words
18.6.1.2486.50 X—SIZE XCHAR

(xc-addr u; —— uy)

u, is the number of pchars used to encode the first xchar stored in the string xc-addr ul.
To calculate the size of the xchar, only the bytes inside the buffer may be accessed. An
ambiguous condition exists if the xchar is incomplete or malformed.

18.6.1.2487.10 XC!+ “x-c-store-plus” XCHAR

(xchar xc-addr; —— xc-addr,)

Stores the xchar at xc-addr). xc-addr, points to the first memory location after the stored
xchar.

18.6.1.2487.15 XC!+? “x-c-store-plus-query” XCHAR

(xchar xc-addr; u; —— xc-addr, u, flag)

Stores the xchar into the string buffer specified by xc-addr; u;. xc-addr, u; is the
remaining string buffer. If the xchar did fit into the buffer, flag is true, otherwise flag
is false, and xc-addr; u, equal xc-addr; u;. XC'!+? is safe for buffer overflows.

18.6.1.2487.20 XC, “x-c-comma” XCHAR

(xchar ——)
Append the encoding of xchar to the dictionary.
See: 6.1.0860 C, .

18.6.1.2487.25 XC—-SIZE “x-c-size” XCHAR

(xchar—— u)

u is the number of pchars used to encode xchar in memory.

xchar V“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ 181

18. XCHAR Word Set Forth 200x / 18.1

18.6.1.2487.35 XCQR+ “x-c-fetch-plus” XCHAR

(xc-addr; —— xc-addr, xchar)

Fetches the xchar at xc-addr;. xc-addr, points to the first memory location after the
retrieved xchar.

18.6.1.2487.40 XCHAR+ “x-char-plus” XCHAR

(xc-addr; —— xc-addry)
Adds the size of the xchar stored at xc-addr to this address, giving xc-addr,.

See: 6.1.0897 CHAR+.

18.6.1.2488.10 XEMIT “x-emit” XCHAR

(xchar ——)
Prints an xchar on the terminal.

See: 6.1.1320 EMIT

18.6.1.2488.30 XKEY “x-key” XCHAR

(—— xchar)

Reads an xchar from the terminal. This will discard all input events up to the completion
of the xchar.

See: 6.1.1750 KEY.

18.6.1.2488.35 XKEY? “x-key-query” XCHAR

(—— flag)

Flag is true when it’s possible to do XKEY without blocking. Subsequent KEY?, KEY,
EKEY?, and EKEY may be affected by XKEY?.

See: 10.6.1.1755 KEY 2.

18.6.2 Extended-Character extension words
18.6.2.0145 +X/STRING “plus-x-string” XCHAR EXT
(xc-addr; u; —— xc-addr; u,)

Step forward by one xchar in the buffer defined by xc-addr; u;. xc-addr, u, is the
remaining buffer after stepping over the first xchar in the buffer.

182 P“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ xchar

Forth 200x / 18.1 18. XCHAR Word Set

18.6.2.0175 -TRAILING-GARBAGE “minus-trailing-garbage” XCHAR EXT

(xc-addr u; —— xc-addr u,)

Examine the last xchar in the string xc-addr u; — if the encoding is correct and it
represents a full xchar, u, equals u,, otherwise, u, represents the string without the last
(garbled) xchar. -TRAILING—-GARBAGE does not change this garbled xchar.

18.6.2.0895 CHAR XCHAR EXT

(“(spaces)name” —— xchar)

Skip leading space delimiters. Parse name delimited by a space. Put the value of its first
xchar onto the stack.

See: 6.1.0895 CHAR

18.6.2.1306.60 EKEY>XCHAR “e-key-to-x-char” XCHAR EXT

(x—— xchar true | x false)

If the keyboard event x corresponds to an xchar, return the xchar and true. Otherwise,
return x and false.

See: 10.6.2.1305 EKEY, 10.6.2.1306 EXEY>CHAR, 10.6.2.1306.40 EKEY>FKEY.

18.6.2.2008 PARSE XCHAR EXT

(xchar “ccc(xchar)” —— c-addru)
Parse ccc in the input stream delimited by xchar.

c-addr is the address (within the input buffer) and u is the length of the parsed string. If
the parse area was empty, the resulting string has a zero length.

See: 3.4.1 Parsing, 6.2.2008 PARSE, A.6.2.2008 PARSE.

18.6.2.2486.70 X—WIDTH XCHAR EXT

(xc-addru—— n)

n is the number of monospace ASCII characters that take the same space to display as the
xchar string xc-addr u; assuming a monospaced display font, i.e., xchar width is always
an integer multiple of the width of an ASCII character.

xchar P“#8 % & () *+,-./digits: ; <=>? @ ALPHA[\]"_‘alpha {1} ~ 183

18. XCHAR Word Set Forth 200x / 18.1

18.6.2.2487.30 XC-WIDTH “x-c-width” XCHAR EXT

(xchar—— n)

n is the number of monospace ASCII characters that take the same space to display as
the xchar; i.e., xchar width is always an integer multiple of the width of an ASCII char.

18.6.2.2487.45 XCHAR- “x-char-minus” XCHAR EXT

(xc-addr; —— xc-addry)

Goes backward from xc-addr; until it finds an xchar so that the size of this xchar added
to xc-addr, gives xc-addrl. There is an ambiguous condition when the encoding doesn’t
permit reliable backward stepping through the text.

18.6.2.2488.20 XHOLD “x-hold” XCHAR EXT

(xchar ——)

Adds xchar to the picture numeric output string. An ambiguous condition exists if
XHOLD executes outside of a <# #> delimited number conversion.

See: 6.1.1670 HOLD.

18.6.2.2495 X\STRING- “x-string-minus”’ XCHAR EXT

(xc-addr u; —— xc-addr u,)

Search for the penultimate xchar in the string xc-addr u;. The string xc-addr u, contains
all xchars of xc-addr u;, but the last. Unlike XCHAR—, X\ STRING- can be implemented
in encodings where xchar boundaries can only reliably detected when scanning in for-
ward direction.

18.6.2.2520 [CHAR] “bracket-char” XCHAR EXT

Interpretation: Interpretation semantics for this word are undefined.
Compilation: (“(spaces)name” ——)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (—— xchar)
Place xchar, the value of the first xchar of name, on the stack.

See: 6.1.2520 [CHAR]

184 P“#8% & () *+,-./digits: ; <=>? @ ALPHA [\]"_ “alpha { | } ~ xchar

Forth 200x / 18.1 A. Rationale

Annex A
(informative)
Rationale

A.1 Introduction
A.1.1 Purpose
A.1.2 Scope

When judging relative merits of proposed changes to the standard, the members of the committee were
guided by the following goals (listed in alphabetic order):

Consistency The standard provides a functionally complete set of words with minimal
functional overlap.

Cost of compliance This goal includes such issues as common practice, how much existing code
would be broken by the proposed change, and the amount of effort required to
bring existing applications and systems into conformity with the standard.

Efficiency Execution speed, memory compactness.
Portability Words chosen for inclusion should be free of system-dependent features.
Readability Forth definition names should clearly delineate their behavior. That behavior

should have an apparent simplicity which supports rapid understanding. Forth
should be easily taught and support readily maintained code.

Utility Be judged to have sufficiently essential functionality and frequency of use to be
deemed suitable for inclusion.

A.2 Terms and notation

A.2.1 Definitions of terms
aligned

Data can only be loaded from and stored to addresses that are aligned according to the alignment
requirements of the accessed type. Field offsets that are added to structure addresses also need to be
aligned.

ambiguous condition

The response of a Standard System to an ambiguous condition is left to the discretion of the im-
plementor. A Standard System need not explicitly detect or report the occurrence of ambiguous
conditions.

cross compiler

Cross compilers may be used to prepare a program for execution in an embedded system, or may be
used to generate Forth kernels either for the same or a different run-time environment.

rationale 185

A. Rationale Forth 200x / 18.1

data field
In earlier standards, data fields were known as “parameter fields”.

On subroutine threaded Forth systems, everything is object code. There are no traditional code or
data fields. Only a word defined by CREATE or by a word that calls CREATE has a data field. Only
a data field defined via CREATE can be manipulated portably.

word set

This standard recognizes that some functions, while useful in certain application areas, are not
sufficiently general to justify requiring them in all Forth systems. Further, it is helpful to group
Forth words according to related functions. These issues are dealt with using the concept of word
sets.

The “Core” word set contains the essential body of words in a Forth system. It is the only “required”
word set. Other word sets defined in this standard are optional additions to make it possible to
provide Standard Systems with tailored levels of functionality.

A.2.2 Notation
A.2.2.2 Stack notation

The use of -sys, orig, and dest data types in stack effect diagrams conveys two pieces of information.
First, it warns the reader that many implementations use the data stack in unspecified ways for those
purposes, so that items underneath on either the control-flow or data stacks are unavailable. Second, in
cases where orig and dest are used, explicit pairing rules are documented on the assumption that all systems
will implement that model so that its results are equivalent to employment of some stack, and that in fact
many implementations do use the data stack for this purpose. However, nothing in this standard requires
that implementations actually employ the data stack (or any other) for this purpose so long as the implied
behavior of the model is maintained.

A.3 Usage requirements

Forth systems are unusually simple to develop, in comparison with compilers for more conventional
languages such as C. In addition to Forth systems supported by vendors, public-domain implementations
and implementation guides have been widely available for nearly twenty years, and a large number of
individuals have developed their own Forth systems. As a result, a variety of implementation approaches
have developed, each optimized for a particular platform or target market.

The committee has endeavored to accommodate this diversity by constraining implementors as little as
possible, consistent with a goal of defining a standard interface between an underlying Forth System and
an application program being developed on it.

Similarly, we will not undertake in this section to tell you how to implement a Forth System, but rather
will provide some guidance as to what the minimum requirements are for systems that can properly claim
compliance with this standard.

186 rationale

Forth 200x / 18.1 A. Rationale

A.3.1 Data types

Most computers deal with arbitrary bit patterns. There is no way to determine by inspection whether a cell
contains an address or an unsigned integer. The only meaning a datum possesses is the meaning assigned
by an application.

When data are operated upon, the meaning of the result depends on the meaning assigned to the input
values. Some combinations of input values produce meaningless results: for instance, what meaning can
be assigned to the arithmetic sum of the ASCII representation of the character “A” and a TRUE flag?
The answer may be “no meaning”; or alternatively, that operation might be the first step in producing a
checksum. Context is the determiner.

The discipline of circumscribing meaning which a program may assign to various combinations of bit
patterns is sometimes called dara typing. Many computer languages impose explicit data typing and have
compilers that prevent ill-defined operations.

Forth rarely explicitly imposes data-type restrictions. Still, data types implicitly do exist, and discipline is
required, particularly if portability of programs is a goal. In Forth, it is incumbent upon the programmer
(rather than the compiler) to determine that data are accurately typed.

This section attempts to offer guidance regarding de facto data typing in Forth.
A.3.1.2 Character types

The correct identification and proper manipulation of the character data type is beyond the purview of
Forth’s enforcement of data type by means of stack depth. Characters do not necessarily occupy the entire
width of their single stack entry with meaningful data. While the distinction between signed and unsigned
character is entirely absent from the formal specification of Forth, the tendency in practice is to treat
characters as short positive integers when mathematical operations come into play.

a) Standard Character Set

1) The storage unit for the character data type (C@, C!, FILL, etc.) must be able to contain
unsigned numbers from O through 255.

2) Animplementation is not required to restrict character storage to that range, but a Standard Pro-
gram without environmental dependencies cannot assume the ability to store numbers outside
that range in a “char” location.

3) Since a “char” can store small positive numbers and since the character data type is a sub-
range of the unsigned integer data type, C! must store the n least-significant bits of a cell
(8 <= n <= bits/cell). Given the enumeration of allowed number representations and their
known encodings, “TRUE xx C! xx CQ” must leave a stack item with some number of bits set,
which will thus will be accepted as non-zero by IF.

4) For the purposes of input (KEY, ACCEPT, etc.) and output (EMIT, TYPE, etc.), the encoding
between numbers and human-readable symbols is ISO646/IRV (ASCII) within the range from
32 to 126 (space to ~). Outside that range, it is up to the implementation. The obvious imple-
mentation choice is to use ASCII control characters for the range from O to 31, at least for the
“displayable” characters in that range (TAB, RETURN, LINEFEED, FORMFEED). However,
this is not as clear-cut as it may seem, because of the variation between operating systems on

rationale 187

A. Rationale Forth 200x / 18.1

b)

¢)

the treatment of those characters. For example, some systems TAB to 4 character boundaries,
others to 8 character boundaries, and others to preset tab stops. Some systems perform an
automatic linefeed after a carriage return, others perform an automatic carriage return after a
linefeed, and others do neither.

The codes from 128 to 255 may eventually be standardized, either formally or informally,
for use as international characters, such as the letters with diacritical marks found in many
European languages. One such encoding is the 8-bit ISO Latin-1 character set. The computer
marketplace at large will eventually decide which encoding set of those characters prevails. For
Forth implementations running under an operating system (the majority of those running on
standard platforms these days), most Forth implementors will probably choose to do whatever
the system does, without performing any remapping within the domain of the Forth system
itself.

5) A Standard Program can depend on the ability to receive any character in the range 32 ...
126 through KEY, and similarly to display the same set of characters with EMIT. If a program
must be able to receive or display any particular character outside that range, it can declare an
environmental dependency on the ability to receive or display that character.

6) A Standard Program cannot use control characters in definition names. However, a Standard
System is not required to enforce this prohibition. Thus, existing systems that currently allow
control characters in words names from BLOCK source may continue to allow them, and pro-
grams running on those systems will continue to work. In text file source, the parsing action
with space as a delimiter (e.g., BL. WORD) treats control characters the same as spaces. This
effectively implies that you cannot use control characters in definition names from text-file
source, since the text interpreter will treat the control characters as delimiters. Note that this
“control-character folding” applies only when space is the delimiter, thus the phrase “CHAR)
WORD” may collect a string containing control characters.

Storage and retrieval

Characters are transferred from the data stack to memory by C! and from memory to the data stack
by C@. A number of lower-significance bits equivalent to the implementation-dependent width of a
character are transferred from a popped data stack entry to an address by the action of C! without
affecting any bits which may comprise the higher-significance portion of the cell at the destination
address; however, the action of C@ clears all higher-significance bits of the data stack entry which
it pushes that are beyond the implementation-dependent width of a character (which may include
implementation-defined display information in the higher-significance bits). The programmer should
keep in mind that operating upon arbitrary stack entries with words intended for the character data
type may result in truncation of such data.

Manipulation on the stack

In addition to C@ and C!, characters are moved to, from and upon the data stack by the following
words:

>R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

188

rationale

Forth 200x / 18.1 A. Rationale

d) Additional operations
The following mathematical operators are valid for character data:
+ - x» / /MOD MOD

The following comparison and bitwise operators may be valid for characters, keeping in mind that
display information cached in the most significant bits of characters in an implementation-defined
fashion may have to be masked or otherwise dealt with:

AND OR > < U> U< = <> 0= 0<> MAX MIN LSHIFT RSHIFT
A.3.1.3 Single-cell types

A single-cell stack entry viewed without regard to typing is the fundamental data type of Forth. All other
data types are actually represented by one or more single-cell stack entries.

a) Storage and retrieval

Single-cell data are transferred from the stack to memory by !; from memory to the stack by @. All
bits are transferred in both directions and no type checking of any sort is performed, nor does the
Standard System check that a memory address used by ! or @ is properly aligned or properly sized
to hold the datum thus transferred.

b) Manipulation on the stack

Here is a selection of the most important words which move single-cell data to, from and upon the
data stack:

! @ >R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP
c) Comparison operators
The following comparison operators are universally valid for one or more single cells:

= <> 0= 0<>

A.3.1.3.1 Flags

A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag is a single-cell datum with all bits
set. While Forth words which test flags accept any non-null bit pattern as true, there exists the concept of
the well-formed flag. If an operation whose result is to be used as a flag may produce any bit-mask other
than TRUE or FALSE, the recommended discipline is to convert the result to a well-formed flag by means
of the Forth word 0<> so that the result of any subsequent logical operations on the flag will be predictable.

In addition to the words which move, fetch and store single-cell items, the following words are valid for
operations on one or more flag data residing on the data stack:

AND OR XOR INVERT

rationale 189

A. Rationale Forth 200x / 18.1

A.3.1.3.2 Integers

A single-cell datum may be treated by a Standard Program as a signed integer. Moving and storing such
data is performed as for any single-cell data. In addition to the universally-applicable operators for single-
cell data specified above, the following mathematical and comparison operators are valid for single-cell
signed integers:

* %/ */MOD /MOD MOD + +! - / 14+ 1- ABS MAX MIN NEGATE 0< 0> < >

Given the same number of bits, unsigned integers usually represent twice the number of absolute values
representable by signed integers.

A single-cell datum may be treated by a Standard Program as an unsigned integer. Moving and storing
such data is performed as for any single-cell data. In addition, the following mathematical and comparison
operators are valid for single-cell unsigned integers:

UM*x UM/MOD + +! - 1+ 1- % U< U>

A.3.1.3.3 Addresses

An address is uniquely represented as a single cell unsigned number and can be treated as such when being
moved to, from, or upon the stack. Conversely, each unsigned number represents a unique address (which
is not necessarily an address of accessible memory). This one-to-one relationship between addresses and
unsigned numbers forces an equivalence between address arithmetic and the corresponding operations on
unsigned numbers.

Several operators are provided specifically for address arithmetic:
CHAR+ CHARS CELL+ CELLS
and, if the floating-point word set is present:
FLOAT+ FLOATS SFLOAT+ SFLOATS DFLOAT+ DFLOATS

A Standard Program may never assume a particular correspondence between a Forth address and the
physical address to which it is mapped.

A.3.1.3.4 Counted strings

Forth 94 moved toward the consistent use of the “c-addr u” representation of strings on the stack. The use
of the alternate “address of counted string” stack representation is discouraged. The traditional Forth words
WORD and FIND continue to use the “address of counted string” representation for historical reasons. The
new word C", added as a porting aid for existing programs, also uses the counted string representation.

Counted strings remain useful as a way to store strings in memory. This use is not discouraged, but when
references to such strings appear on the stack, it is preferable to use the “c-addr u” representation.

A.3.1.3.5 Execution tokens

The association between an execution token and a definition is static. Once made, it does not change with
changes in the search order or anything else. However it may not be unique, e.g., the phrases

190 rationale

Forth 200x / 18.1 A. Rationale

" 1+ and
’ CHAR+

might return the same value.

A.3.1.3.6 Error results

The term ior was originally defined to describe the result of an input/output operation. This was extended
to include other operations.

A.3.1.4 Cell-pair types
a) Storage and retrieval
Two operators are provided to fetch and store cell pairs:
2@ 2!
b) Manipulation on the stack
Additionally, these operators may be used to move cell pairs from, to and upon the stack:
2>R 2DROP 2DUP 20VER 2R> 2SWAP 2ROT
¢) Comparison
The following comparison operations are universally valid for cell pairs:

D= DO=

A.3.14.1 Double-Cell Integers

If a double-cell integer is to be treated as signed, the following comparison and mathematical operations
are valid:

D+ D- D< DO< DABS DMAX DMIN DNEGATE Mx/ M+

If a double-cell integer is to be treated as unsigned, the following comparison and mathematical operations
are valid:

D+ D- UM/MOD DU<

A.3.1.4.2 Character strings
See: A.3.1.3.4 Counted strings.

A.3.2 The Implementation environment
A.3.2.1 Numbers

Traditionally, Forth has been implemented on two’s-complement machines where there is a one-to-one
mapping of signed numbers to unsigned numbers — any single cell item can be viewed either as a signed
or unsigned number. Indeed, the signed representation of any positive number is identical to the equivalent

rationale 191

A. Rationale Forth 200x / 18.1

unsigned representation. Further, addresses are treated as unsigned numbers: there is no distinct pointer
type. Arithmetic ordering on two’s complement machines allows + and — to work on both signed and
unsigned numbers. This arithmetic behavior is deeply embedded in common Forth practice.

As a consequence of these behaviors, the range of signed numbers is —# — 1 to # and for unsigned numbers
is 0 to 2n+ 1, where n is the largest positive signed number. Signed numbers in the O to n range are bitwise
identical to the corresponding unsigned number.

A.3.2.1.2 Digit conversion

For example, an implementation might convert the characters “a” through “z” identically to the characters
“A” through “Z”, or it might treat the characters “ [” through “~ as additional digits with decimal values
36 through 71, respectively.

A.3.2.2 Arithmetic
A.3.2.2.1 Integer division

The Forth-79 Standard specifies that the signed division operators (/, /MOD, MOD, * /MOD, and /) round
non-integer quotients towards zero (symmetric division). Forth 83 changed the semantics of these operators
to round towards negative infinity (floored division). Some in the Forth community have declined to convert
systems and applications from the Forth-79 to the Forth-83 divide. To resolve this issue, a Forth-2012
system is permitted to supply either floored or symmetric operators. In addition, a standard system must
provide a floored division primitive (FM/MOD), a symmetric division primitive (SM/REM), and a mixed
precision multiplication operator (Mx).

This compromise protects the investment made in current Forth applications; Forth-79 and Forth-83 pro-
grams are automatically compliant with Forth 94 with respect to division. In practice, the rounding
direction rarely matters to applications. However, if a program requires a specific rounding direction, it
can use the floored division primitive FM/MOD or the symmetric division primitive SM/REM to construct a
division operator of the desired flavor. This simple technique can be used to convert Forth-79 and Forth-83
programs to Forth 94 without any analysis of the original programs.

A.3.2.3 Stacks

The only data type in Forth which has concrete rather than abstract existence is the stack entry. Even this
primitive typing Forth only enforces by the hard reality of stack underflow or overflow. The programmer
must have a clear idea of the number of stack entries to be consumed by the execution of a word and the
number of entries that will be pushed back to a stack by the execution of a word. The observation of
anomalous occurrences on the data stack is the first line of defense whereby the programmer may recog-
nize errors in an application program. It is also worth remembering that multiple stack errors caused by
erroneous application code are frequently of equal and opposite magnitude, causing complementary (and
deceptive) results.

For these reasons and a host of other reasons, the one unambiguous, uncontroversial, and indispensable
programming discipline observed since the earliest days of Forth is that of providing a stack diagram for
all additions to the application dictionary with the exception of static constructs such as VARIABLEs and
CONSTANTS.

192 rationale

Forth 200x / 18.1 A. Rationale

A3.2.3.2 Control-flow stack The simplest use of control-flow words is to implement the basic control
structures shown in figure A.1.

IF BEGIN BEGIN

UNTIL
THEN AGAIN

Figure A.1: The basic control-flow patterns

In control flow every branch, or transfer of control, must terminate at some destination. A natural im-
plementation uses a stack to remember the origin of forward branches and the destination of backward
branches. At a minimum, only the location of each origin or destination must be indicated, although other
implementation-dependent information also may be maintained.

An origin is the location of the branch itself. A destination is where control would continue if the branch
were taken. A destination is needed to resolve the branch address for each origin, and conversely, if every
control-flow path is completed no unused destinations can remain.

With the addition of just three words (AHEAD, CS—ROLL and CS—PICK), the basic control-flow words
supply the primitives necessary to compile a variety of transportable control structures. The abilities
required are compilation of forward and backward conditional and unconditional branches and compile-
time management of branch origins and destinations. Table A.1 shows the desired behavior.

Table A.1: Compilation behavior of control-flow words
at compile-time,

word: supplies: resolves: is used to:

IF orig mark origin of forward conditional branch
THEN orig resolve IF or AHEAD

BEGIN dest mark backward destination

AGAIN dest resolve with backward unconditional branch
UNTIL dest resolve with backward conditional branch
AHEAD orig mark origin of forward unconditional branch
CS-PICK copy item on control-flow stack

CS—-ROLL reorder items on control-flow stack

The requirement that control-flow words are properly balanced by other control-flow words makes reason-
able the description of a compile-time implementation-defined control-flow stack. There is no prescription
as to how the control-flow stack is implemented, e.g., data stack, linked list, special array. Each element of
the control-flow stack mentioned above is the same size.

rationale 193

A. Rationale Forth 200x / 18.1

With these tools, the remaining basic control-structure elements, shown in figure A.2, can be defined. The
stack notation used here for immediate words is (compilation / execution).

WHILE (dest —-- orig dest / flag ——)

\ conditional exit from loops

POSTPONE IF \ conditional forward brach
1 CS-ROLL \ keep dest on top

; IMMEDIATE

REPEAT (orig dest -- / ——)
\ resolve a single WHILE and return to BEGIN
POSTPONE AGAIN \ uncond. backward branch to dest

POSTPONE THEN \ resolve forward branch from orig
; IMMEDIATE
ELSE (origl -- orig2 / —-—)

\ resolve IF supplying alternate execution

POSTPONE AHEAD \ unconditional forward branch orig2

1 CS-ROLL \ put origl back on top

POSTPONE THEN \ resolve forward branch from origl
; IMMEDIATE

IF BEGIN

_J ELSE WHILE

THEN \a_ _,J REPEAT
r

Figure A.2: Additional basic control-flow patterns

Forth control flow provides a solution for well-known problems with strictly structured programming.

The basic control structures can be supplemented, as shown in the examples in figure A.3, with additional
WHILES in BEGIN ... UNTIL and BEGIN ... WHILE ... REPEAT structures. However, for each
additional WHILE there must be a THEN at the end of the structure. THEN completes the syntax with
WHILE and indicates where to continue execution when the WHILE transfers control. The use of more
than one additional WHILE is possible but not common. Note that if the user finds this use of THEN
undesirable, an alias with a more likable name could be defined.

194 rationale

Forth 200x / 18.1 A. Rationale

Additional actions may be performed between the control flow word (the REPEAT or UNTIL) and the
THEN that matches the additional WHILE. Further, if additional actions are desired for normal termination
and early termination, the alternative actions may be separated by the ordinary Forth ELSE. The termination
actions are all specified after the body of the loop.

ﬂ BEGIN

.
=

BEGIN

WHILE UNTIL

LJ REPEAT ELSE

K_
THEN THEN

Figure A.3: Extended control-flow patterns

\
\.

Note that REPEAT creates an anomaly when matching the WHILE with ELSE or THEN, most notably when
compared with the BEGIN...UNTIL case. That is, there will be one less ELSE or THEN than there are
WHILES because REPEAT resolves one THEN. As above, if the user finds this count mismatch undesirable,
REPEAT could be replaced in-line by its own definition.

Other loop-exit control-flow words, and even other loops, can be defined. The only requirements are that
the control-flow stack is properly maintained and manipulated.

The simple implementation of the CASE structure below is an example of control structure extension. Note
the maintenance of the data stack to prevent interference with the possible control-flow stack usage.

0 CONSTANT CASE IMMEDIATE (init count of OFs)

OF (#of —-- orig #of+l / x ——)
1+ (count OFs)
>R (move off the stack in case the control-flow)

(stack is the data stack.)

rationale 195

A. Rationale Forth 200x / 18.1

POSTPONE OVER POSTPONE = (copy and test case value)
POSTPONE IF (add orig to control flow stack)
POSTPONE DROP (discards case value if =)

R> (we can bring count back now)

; IMMEDIATE

ENDOF (origl #of -- orig2 #of)
>R (move off the stack in case the control-flow)
(stack is the data stack.)
POSTPONE ELSE
R> (we can bring count back now)
; IMMEDIATE

ENDCASE (origl..orign #of —--)
POSTPONE DROP (discard case value)
0 ?DO
POSTPONE THEN
LOOP
; IMMEDIATE

A.3.2.3.3 Return stack

The restrictions in section 3.2.3.3 Return stack are necessary if implementations are to be allowed to place
loop parameters on the return stack.

A.3.2.6 Environmental queries

The size in address units of various data types may be determined by phrases such as 1 CHARS. Similarly,
alignment may be determined by phrases such as 1 ALIGNED.

The environmental queries are divided into two groups: those that always produce the same value and those
that might not. The former groups include entries such as MAX-N. This information is fixed by the hardware
or by the design of the Forth system; a user is guaranteed that asking the question once is sufficient.

The other, now obsolescent, group of queries are for things that may legitimately change over time. For
example an application might test for the presence of the Double Number word set using an environment
query. If it is missing, the system could invoke a system-dependent process to load the word set. The
system is permitted to change ENVIRONMENT ?’s database so that subsequent queries about it indicate that
it is present.

Note that a query that returns an “unknown” response could produce a “known” result on a subsequent
query.

A.3.2.7 Obsolescent Environmental Queries

When reviewing the Forth 94 Standard, the question of adapting the word set queries had to be addressed.

Despite the recommendation in Forth 94, word set queries have not been supported in a meaningful way
by many systems. Consequently, these queries are not used by many programmers. The committee was

196 rationale

Forth 200x / 18.1 A. Rationale

unwilling to exacerbate the problem by introducing additional queries for the revised word sets. The
committee has therefore declared the word set environment queries (see table 3.6) as obsolescent with the
intention of removing them altogether in the next revision. They are retained in this standard to support
existing Forth 94 programs. New programs should not use them.

A.3.2.8 Extension queries

A.3.3 The Forth dictionary

A Standard Program may redefine a standard word with a non-standard definition. The program is still
standard (since it can be built on any Standard System), but the effect is to make the combined entity
(Standard System plus Standard Program) a non-standard system.

A.3.3.1 Name space
A.3.3.1.2 Definition names

The language in this section is there to ensure the portability of Standard Programs. If a program uses
something outside the Standard that it does not provide itself, there is no guarantee that another imple-
mentation will have what the program needs to run. There is no intent whatsoever to imply that all Forth
programs will be somehow lacking or inferior because they are not standard; some of the finest jewels
of the programmer’s art will be non-standard. At the same time, the committee is trying to ensure that a
program labeled “Standard” will meet certain expectations, particularly with regard to portability.

In many system environments the input source is unable to supply certain non-graphic characters due
to external factors, such as the use of those characters for flow control or editing. In addition, when
interpreting from a text file, the parsing function specifically treats non-graphic characters like spaces; thus
words received by the text interpreter will not contain embedded non-graphic characters. To allow imple-
mentations in such environments to call themselves standard, this minor restriction on Standard Programs
is necessary.

A Standard System is allowed to permit the creation of definition names containing non-graphic characters.
Historically, such names were used for keyboard editing functions and “invisible” words.

A.3.3.2 Code space
A.3.3.3 Data space

The words >IN, BASE, BLK, SCR, SOURCE, SOURCE-ID, STATE contain information used by the Forth
system in its operation and may be of use to the application. Any assumption made by the application
about data available in the Forth system it did not store other than the data just listed is an environmental
dependency.

There is no point in specifying (in the Standard) both what is and what is not addressable. A Standard
Program may NOT address:

— Directly into the data or return stacks;
— Into a definition’s data field if not stored by the application.

The read-only restrictions arise because some Forth systems run from ROM and some share I/O buffers
with other users or systems. Portable programs cannot know which areas are affected, hence the general

rationale 197

ed18

A. Rationale Forth 200x / 18.1

restrictions.

A.3.3.3.1 Address alignment

Some processors have restrictions on the addresses that can be used by memory access instructions. For
example, some architectures require 16-bit data to be loaded or stored only at even addresses and 32-bit
data only at addresses that are multiples of four.

An implementor can handle these alignment restrictions in one of two ways. Forth’s memory access
words (@, !, +!, etc.) could be implemented in terms of smaller-width access instructions, which have
no alignment restrictions. For example, on a system with 16-bit cells, @ could be implemented with
two byte-fetch instructions and a reassembly of the bytes into a 16-bit cell. Although this conceals
hardware restrictions from the programmer, it is inefficient, and may have unintended side effects in some
hardware environments. An alternate implementation could define each memory-access word using the
native instructions that most closely match the word’s function. The 16-bit cell system could implement
@ using the processor’s 16-bit fetch instruction, in this case, the responsibility for giving @ a correctly-
aligned address falls on the programmer. A portable program must assume that alignment may be required
and follow the requirements of this section.

A.3.3.3.2 Contiguous regions

The data space of a Forth system comes in discontiguous regions. The location of some regions is provided
by the system, some by the program. Data space is contiguous within regions, allowing address arithmetic
to generate valid addresses only within a single region. A Standard Program cannot make any assumptions
about the relative placement of multiple regions in memory.

Section 3.3.3.2 does prescribe conditions under which contiguous regions of data space may be obtained.
For example:

CREATE TABLE 1 C, 2 C, ALIGN 1000 , 2000 ,

makes a table whose address is returned by TABLE. In accessing this table,

TABLE CQ@ will return 1
TABLE CHAR+ C@ will return 2
TABLE 2 CHARS + ALIGNED @ will return 1000

TABLE 2 CHARS + ALIGNED CELL+ @ will return 2000.
Similarly,
CREATE DATA 1000 ALLOT

makes an array 1000 address units in size. A more portable strategy would define the array in application
units, such as:

500 CONSTANT NCELLS
CREATE CELL-DATA NCELLS CELLS ALLOT

This array can be indexed like this:

LOOK NCELLS 0 DO CELL-DATA I CELLS + ? LOOP ;

198 rationale

Forth 200x / 18.1 A. Rationale

A.3.3.3.4 Text-literal regions

Additional transient buffers are provided for use by C", S" and S\ ". The buffers should be able to store
two consecutive strings, thus allowing the command line:

S" namel" S" name2" RENAME-FILE

The buffers may be implemented in a circular arrangement, where a string is placed into the next available
buffer. When there are no buffers available, the oldest buffer is overwritten.

S" and S\ " may share the same buffers.

The list of words using memory in transient regions is extended to include 6.1.2165 S" and 6.2.2266
S\".

A.3.3.3.6 Other transient regions
In many existing Forth systems, these areas are at HERE or just beyond it, hence the many restrictions.

(2xn) 42 is the size of a character string containing the unpunctuated binary representation of the maxi-
mum double number with a leading minus sign and a trailing space.

Implementation note: Since the minimum value of n is 16, the absolute minimum size of the pictured
numeric output string is 34 characters. But if your implementation has a larger n, you must also increase
the size of the pictured numeric output string.

A.3.4 The Forth text interpreter
A.3.4.3 Semantics

The “initiation semantics” correspond to the code that is executed upon entering a definition, analogous
to the code executed by EXIT upon leaving a definition. The “run-time semantics” correspond to code
fragments, such as literals or branches, that are compiled inside colon definitions by words with explicit
compilation semantics.

In a Forth cross compiler, the execution semantics may be specified to occur in the host system only, the
target system only, or in both systems. For example, it may be appropriate for words such as CELLS to
execute on the host system returning a value describing the target, for colon definitions to execute only on
the target, and for CONSTANT and VARIABLE to have execution behaviors on both systems. Details of
cross compiler behavior are beyond the scope of this standard.

A.3.4.3.2 Interpretation semantics

For a variety of reasons, this standard does not define interpretation semantics for every word. Examples of
these words are >R, . ", DO, and IF. Nothing in this Standard precludes an implementation from providing
interpretation semantics for these words, such as interactive control-flow words. However, a Standard
Program may not use them in interpretation state.

rationale 199

A. Rationale Forth 200x / 18.1

A.3.4.5 Compilation

Compiler recursion at the definition level consumes excessive resources, especially to support locals. The
committee does not believe that the benefits justify the costs. Nesting definitions is also not common
practice and won’t work on many systems.

A.4 Documentation requirements
A.4.1 System documentation

A.4.2 Program documentation

A.5 Compliance and labeling
A.5.1 Forth-2012 systms

Section 5.1 defines the criteria that a system must meet in order to justify the label “Forth-2012 System”.
Briefly, the minimum requirement is that the system must “implement” the Core word set. There are
several ways in which this requirement may be met. The most obvious is that all Core words may be in a
pre-compiled kernel. This is not the only way of satisfying the requirement, however. For example, some
words may be provided in source blocks or files with instructions explaining how to add them to the system
if they are needed. So long as the words are provided in such a way that the user can obtain access to them
with a clear and straightforward procedure, they may be considered to be present.

A Forth cross compiler has many characteristics in common with a standard system, in that both use
similar compiling tools to process a program. However, in order to fully specify a Forth-2012 standard
cross compiler it would be necessary to address complex issues dealing with compilation and execution
semantics in both host and target environments as well as ROMability issues. The level of effort to do this
properly has proved to be impractical at this time. As a result, although it may be possible for a Forth cross
compiler to correctly prepare a Forth-2012 standard program for execution in a target environment, it is
inappropriate for a cross compiler to be labeled a Forth-2012 standard system.

A.5.2 Forth-2012 programs
A.5.2.2 Program labeling

Declaring an environmental dependency should not be considered undesirable, merely an acknowledgment
that the author has taken advantage of some assumed architecture. For example, by acknowledging an
environmental dependency on big-endian memory access, a programmer becomes entitled to use the lowest
memory address of a cell as its the most significant byte.

Because all programs require space for data and instructions, and time to execute those instructions, they
depend on the presence of an environment providing those resources. It is impossible to predict how little
of some of these resources (e.g. stack space) might be necessary to perform some task, so this standard
does not do so.

On the other hand, as a program requires increasing levels of resources, there will probably be sucessively
fewer systems on which it will execute sucessfully. An algorithm requiring an array of 10° cells might run
on fewer computers than one requiring only 103.

200 rationale

Forth 200x / 18.1 A. Rationale

Since there is also no way of knowing what minimum level of resources will be implemented in a system
useful for at least some tasks, any program performing real work labeled simply a “Standard Forth-2012
Program” is unlikely to be labeled correctly.

A.6 Glossary

In this and following sections we present rationales for the handling of specific words: why we included
them, why we placed them in certain word sets, or why we specified their names or meaning as we did.

Words in this section are organized by word set, retaining their index numbers for easy cross-referencing
to the glossary.

Historically, many Forth systems have been written in Forth. Many of the words in Forth originally had
as their primary purpose support of the Forth system itself. For example, WORD and FIND are often used
as the principle instruments of the Forth text interpreter, and CREATE in many systems is the primitive for
building dictionary entries. In defining words such as these in a standard way, we have endeavored not to
do so in such a way as to preclude their use by implementors. One of the features of Forth that has endeared
it to its users is that the same tools that are used to implement the system are available to the application
programmer — a result of this approach is the compactness and efficiency that characterizes most Forth
implementations.

A.6.1.0070

Typical use: ... ' name.

Many Forth systems use a state-smart tick. Many do not. Forth-2012 follows the usage of Forth 94.
See: A.3.4.3.2 Interpretation semantics, A.6.1.1550 F IND.
A.6.1.0080 (

Typical use: ... (ccc) ...

A.6.1.0140 +LoOP
Typical use: : X ... limit first DO ... step +LOOP ;

A.6.1.0150 ,

The use of , (comma) for compiling execution tokens is not portable.
See: 6.2.0945 COMPILE, .

A.6.1.0190 ."

Typicaluse: : X"ccc" ... ;

An implementation may define interpretation semantics for . " if desired. In one plausible imple-
mentation, interpreting . " would display the delimited message. In another plausible implement-
ation, interpreting ." would compile code to display the message later. In still another plausible
implementation, interpreting . " would be treated as an exception. Given this variation a Stand-
ard Program may not use ." while interpreting. Similarly, a Standard Program may not compile
POSTPONE . " inside a new word, and then use that word while interpreting.

rationale 201

A. Rationale Forth 200x / 18.1

A.6.1.0450

Typical use: : name ... ;

In Forth 83, this word was specified to alter the search order. This specification is explicitly removed
in this standard. We believe that in most cases this has no effect; however, systems that allow many
search orders found the Forth-83 behavior of colon very undesirable.

Note that colon does not itself invoke the compiler. Colon sets compilation state so that later words
in the parse area are compiled.

A.6.1.0460 ;

Typical use: : name ... ;

One function performed by both ; and ; CODE is to allow the current definition to be found in the
dictionary. If the current definition was created by : NONAME the current definition has no definition
name and thus cannot be found in the dictionary. If : NONAME is implemented the Forth compiler
must maintain enough information about the current definition to allow ; and ; CODE to determine
whether or not any action must be taken to allow it to be found.

A.6.1.0550 >BODY

a-addr is the address that HERE would have returned had it been executed immediately after the
execution of the CREATE that defined xz.

A.6.1.0680 ABORT"

Typical use: : X ... fest ABORT" ccc" ... ;

A.6.1.0695 ACCEPT

Specification of a non-zero, positive integer count (+7;) for ACCEPT allows some implementors to
continue their practice of using a zero or negative value as a flag to trigger special behavior. Insofar as
such behavior is outside the standard, Standard Programs cannot depend upon it, but the committee
doesn’t wish to preclude it unnecessarily. Because actual values are almost always small integers, no
functionality is impaired by this restriction.

It is recommended that all non-graphic characters be reserved for editing or control functions and
not be stored in the input string.

Because external system hardware and software may perform the ACCEPT function, when a line
terminator is received the action of the cursor, and therefore the display, is implementation-defined. It
is recommended that the cursor remain immediately following the entered text after a line terminator
is received.

A.6.1.0705 ALIGN

In this standard we have attempted to provide transportability across various CPU architectures. One
of the frequent causes of transportability problems is the requirement of cell-aligned addresses on
some CPUs. On these systems, ALIGN and ALIGNED may be required to build and traverse data
structures built with C, . Implementors may define these words as no-ops on systems for which they
aren’t functional.

202

rationale

Forth 200x / 18.1 A. Rationale

A.6.1.0760 BEGIN
Typical use:

: X... BEGIN... fest UNTIL ;
or
: X... BEGIN... test WHILE ... REPEAT ;

A.6.1.0770 BL

Because space is used throughout Forth as the standard delimiter, this word is the only way a program
has to find and use the system value of “space”. The value of a space character can not be obtained
with CHAR, for instance.

A.6.1.0880 CELL+

As with ALIGN and ALIGNED, the words CELLS and CELL+ were added to aid in transportability
across systems with different cell sizes. They are intended to be used in manipulating indexes and
addresses in integral numbers of cell-widths. Example:

2VARIABLE DATA

0 100 DATA 2!
DATA @ . 100
DATA CELL+ @ . O

A.6.1.0890 CELLS
Example:

CREATE NUMBERS 100 CELLS ALLOT
Allots space in the array NUMBERS for 100 cells of data.

A.6.1.0895 CHAR
Typical use: ... CHAR A CONSTANT "A" ...

A.6.1.0950 CONSTANT
Typical use: ... DECIMAL 10 CONSTANT TEN ...

A.6.1.1000 CREATE

The data-field address of a word defined by CREATE is given by the data-space pointer immediately
following the execution of CREATE.

Reservation of data field space is typically done with ALLOT.
Typical use: ... CREATE SOMETHING...

A.6.1.1240 DO
Typical use:

: X ... limit first DO ... LOOP ;

or

rationale 203

A. Rationale Forth 200x / 18.1

: X ... limit first DO ... step +LOOP ;

A.6.1.1250 DOES>
Typical use: : X... DOES> ... ;

Following DOES>, a Standard Program may not make any assumptions regarding the ability to find
either the name of the definition containing the DOES> or any previous definition whose name may
be concealed by it. DOES> effectively ends one definition and begins another as far as local variables
and control-flow structures are concerned. The compilation behavior makes it clear that the user is
not entitled to place DOES> inside any control-flow structures.

A.6.1.1310 ELSE
Typical use: : X ... fest IF ... ELSE ... THEN ;

A.6.1.1345 ENVIRONMENT?
In a Standard System that contains only the Core word set, effective use of ENVIRONMENT ? requires
either its use within a definition, or the use of user-supplied auxiliary definitions. The Core word set
lacks both a direct method for collecting a string in interpretation state (11.6.1.2165 S" is in an

optional word set) and also a means to test the returned flag in interpretation state (e.g. the optional
15.6.2.2532 [IF]).

A.6.1.1380 EXIT
Typical use: : X ... fest IF ... EXIT THEN ... ;

A.6.1.1550 FIND
One of the more difficult issues which the committee took on was the problem of divorcing the
specification of implementation mechanisms from the specification of the Forth language. Three
basic implementation approaches can be quickly enumerated:

1) Threaded code mechanisms. These are the traditional approaches to implementing Forth, but
other techniques may be used.

2) Subroutine threading with “macro-expansion” (code copying). Short routines, like the code for
DUP, are copied into a definition rather than compiling a JSR reference.

3) Native coding with optimization. This may include stack optimization (replacing such phrases
as SWAP ROT + with one or two machine instructions, for example), parallelization (the trend
in the newer RISC chips is to have several functional subunits which can execute in parallel),
and so on.

The initial requirement (inherited from Forth 83) that compilation addresses be compiled into the
dictionary disallowed type 2 and type 3 implementations.

Type 3 mechanisms and optimizations of type 2 implementations were hampered by the explicit
specification of immediacy or non-immediacy of all standard words. POSTPONE allowed de-spec-
ification of immediacy or non-immediacy for all but a few Forth words whose behavior must be
STATE-independent.

One type 3 implementation, Charles Moore’s cmForth, has both compiling and interpreting versions
of many Forth words. At the present, this appears to be a common approach for type 3 implement-
ations. The committee felt that this implementation approach must be allowed. Consequently, it is

204 rationale

Forth 200x / 18.1 A. Rationale

possible that words without interpretation semantics can be found only during compilation, and other
words may exist in two versions: a compiling version and an interpreting version. Hence the values
returned by FIND may depend on STATE, and ' and [’] may be unable to find words without
interpretation semantics.

A.6.1.1561 FM/MOD
By introducing the requirement for “floored” division, Forth 83 produced much controversy and
concern on the part of those who preferred the more common practice followed in other languages
of implementing division according to the behavior of the host CPU, which is most often symmetric
(rounded toward zero). In attempting to find a compromise position, this standard provides primitives
for both common varieties, floored and symmetric (see SM/REM). FM/MOD is the floored version.

The committee considered providing two complete sets of explicitly named division operators, and
declined to do so on the grounds that this would unduly enlarge and complicate the standard. Instead,
implementors may define the normal division words in terms of either FM/MOD or SM/REM providing
they document their choice. People wishing to have explicitly named sets of operators are encouraged
to do so. FM/MOD may be used, for example, to define:

/_MOD (nl n2 —— n3 n4) >R S>D R> FM/MOD ;
/_ (nl n2 —— n3) /_MOD SWAP DROP ;
_MOD (nl n2 -- n3) /_MOD DROP ;
x*/_MOD (nl n2 n3 -— n4 n5) >R Mx R> FM/MOD ;
*/_ (nl n2Z n3 —— n4) =/_MOD SWAP DROP ;
A.6.1.1700 IF
Typical use:

: X...test IF ... THEN... ;
or
:X...testIF ... ELSE... THEN... ;

A.6.1.1710 IMMEDIATE
Typicaluse: : X ... ; IMMEDIATE

A.6.1.1720 INVERT

The word NOT was originally provided in Forth as a flag operator to make control structures readable.
Under its intended usage the following two definitions would produce identical results:

ONE (flag ——)

IF ." true" ELSE ." false" THEN ;

TWO (flag ——)

NOT IF ." false" ELSE ." true" THEN ;

This was common usage prior to the Forth-83 Standard which redefined NOT as a cell-wide one’s-
complement operation, functionally equivalent to the phrase —1 XOR. At the same time, the data type
manipulated by this word was changed from a flag to a cell-wide collection of bits and the standard

rationale 205

A. Rationale Forth 200x / 18.1

value for true was changed from “1” (rightmost bit only set) to “-1” (all bits set). As these definitions
of TRUE and NOT were incompatible with their previous definitions, many Forth users continue to
rely on the old definitions. Hence both versions are in common use.

Therefore, usage of NOT cannot be standardized at this time. The two traditional meanings of NOT
— that of negating the sense of a flag and that of doing a one’s complement operation — are made
available by 0= and INVERT, respectively.

A.6.1.1730 J

J may only be used with a nested DO ... LOOP,DO ... +LOOP, ?DO ... LOOP, or ?DO ... +LOOP,
for example, in the form:

:X...DO...DO... J... LOOP ... +LOOP ... ;

A.6.1.1750 KEY

Use of KEY indicates that the application is processing primitive characters. Some input devices,
e.g., keyboards, may provide more information than can be represented as a primitive character and
such an event may be received as an implementation-specific sequence of primitive characters.

See A.10.6.2.1305 EKEY.

A.6.1.1760 LEAVE

Note that LEAVE immediately exits the loop. No words following LEAVE within the loop will be
executed. Typical use:

:X...DO... IF ... LEAVE THEN... LOOP ... ;

A.6.1.1780 LITERAL
Typicaluse: : X... [x] LITERAL... ;

A.6.1.1800 1.OOP
Typical use:

: X... limit first DO ... LOOP ... ;
or
: X ... limit first ?DO ... LOOP ... ;

A.6.1.1810 M=

This word is a useful early step in calculation, going to extra precision conveniently. It has been in
use since the Forth systems of the early 1970’s.

A.6.1.1900 MOVE

CMOVE and CMOVE> are the primary move operators in Forth 83. They specify a behavior for moving
that implies propagation if the move is suitably invoked. In some hardware, this specific behavior
cannot be achieved using the best move instruction. Further, CMOVE and CMOVE> move characters;
Forth needs a move instruction capable of dealing with address units. Thus MOVE has been defined
and added to the Core word set, and CMOVE and CMOVE> have been moved to the String word set.

206 rationale

Forth 200x / 18.1 A. Rationale

A.6.1.2033 POSTPONE
Typical use:

: ENDIF POSTPONE THEN ; IMMEDIATE
: X... IF... ENDIF... ;

POSTPONE replaces most of the functionality of COMPILE and [COMPILE]. COMPILE and
[COMPILE] are used for the same purpose: postpone the compilation behavior of the next word
in the parse area. COMPILE was designed to be applied to non-immediate words and [COMPILE]
to immediate words. This burdens the programmer with needing to know which words in a system
are immediate. Consequently, Forth standards have had to specify the immediacy or non-immediacy
of all words covered by the standard. This unnecessarily constrains implementors.

A second problem with COMPILE is that some programmers have come to expect and exploit a
particular implementation, namely:

: COMPILE R>DUP @ , CELL+ >R ;

This implementation will not work on native code Forth systems. In a native code Forth using inline
code expansion and peephole optimization, the size of the object code produced varies; this infor-
mation is difficult to communicate to a “dumb” COMPILE. A “smart” (i.e., immediate) COMPILE
would not have this problem, but this was forbidden in previous standards.

For these reasons, COMP I LE has not been included in the standard and [COMPILE] has been moved
in favor of POSTPONE. Additional discussion can be found in Hayes, J.R., “Postpone”, Proceedings
of the 1989 Rochester Forth Conference.

A.6.1.2120 RECURSE
Typicaluse: : X... RECURSE... ;

This is Forth’s recursion operator; in some implementations it is called MYSELF. The usual example
is the coding of the factorial function.

FACTORIAL (+nl —-- +n2)

DUP 2 < IF DROP 1 EXIT THEN

DUP 1- RECURSE «*
ny =ny(n; —1)(n; —2)---(2)(1), the product of n; with all positive integers less than itself (as
a special case, zero factorial equals one). While beloved of computer scientists, recursion makes

unusually heavy use of both stacks and should therefore be used with caution. See alternate definition
in A.6.1.2140 REPEAT.

A.6.1.2140 REPEAT

Typical use:
FACTORIAL (+nl —-—- +n2)
DUP 2 < IF DROP 1 EXIT THEN
DUP

BEGIN DUP 2 > WHILE
1- SWAP OVER * SWAP

rationale 207

edl8

A. Rationale Forth 200x / 18.1

REPEAT DROP

4

A.6.1.2165 s"

Typical use:
... S"ccc" ...
or
: X...S8"¢cce" ... ;

The interpretation semantics for S" are intended to provide a simple mechanism for entering a string
in the interpretation state. Since an implementation may choose to provide only one buffer for
interpreted strings, an interpreted string is subject to being overwritten by the next execution of S"
or S\ " in interpretation state. It is intended that no standard words other than S" or S\ " should in
themselves cause the interpreted string to be overwritten. However, since words such as EVALUATE,
LOAD, INCLUDE-FILE and INCLUDED can result in the interpretation of arbitrary text, possibly
including instances of S" or S\ ", the interpreted string may be invalidated by some uses of these
words.

When the possibility of overwriting a string can arise, it is prudent to copy the string to a “safe”
buffer allocated by the application.

A.6.1.2214 SM/REM

See the previous discussion of division under FM/MOD. SM/REM is the symmetric-division primitive,
which allows programs to define the following symmetric-division operators:

/-REM (nl n2 -— n3 n4) >R S>D R> SM/REM ;

/— (nl n2 —— n3) /-REM SWAP DROP ;

-REM (nl n2 —— n3) /-REM DROP ;

*/-REM (nl n2 n3 —— n4 n5) >R Mx R> SM/REM ;

*/— (nl n2 n3 —— n4) x/-REM SWAP DROP ;

A.6.1.2216 SOURCE

SOURCE simplifies the process of directly accessing the input buffer by hiding the differences be-
tween its location for different input sources. This also gives implementors more flexibility in their
implementation of buffering mechanisms for different input sources. The committee moved away
from an input buffer specification consisting of a collection of individual variables.

A.6.1.2250 STATE

Although EVALUATE, LOAD, INCLUDE-FILE and INCLUDED are not listed as words which alter
STATE, the text interpreted by any one of these words could include one or more words which
explicitly alter STATE. EVALUATE, LOAD, INCLUDE-FILE and INCLUDED do not in themselves
alter STATE.

STATE does not nest with text interpreter nesting. For example, the code sequence:

: FOO S"]" EVALUATE ; FOO

208

rationale

Forth 200x / 18.1

A. Rationale

will leave the system in compilation state. Similarly, after LOADing a block containing], the system

will be in compilation state.

Note that] does not affect the parse area and that the only effect that : has on the parse area is to
parse a word. This entitles a program to use these words to set the state with known side-effects on

the parse area. For example:
: NOP : POSTPONE ; IMMEDIATE ;

NOP ALIGN
NOP ALIGNED

Some non-compliant systems have] invoke a compiler loop in addition to setting STATE. Such a

system would inappropriately attempt to compile the second use of NOP.

A.6.1.2270 THEN
Typical use:

: X...test IF ... THEN... ;
or
:X...test IF ... ELSE ... THEN... ;

A.6.1.2380 UNLOOP
Typical use:

XL
limit first DO
. test IF ... UNLOOP EXIT THEN...
LOOP ...

4

UNLOOP allows the use of EXIT within the context of DO ... LOOP and related do-loop constructs.
UNLOOP as a function has been called UNDO. UNLOOP is more indicative of the action: nothing gets

undone — we simply stop doing it.

A.6.1.2390 UNTIL
Typical use: : X ... BEGIN... fest UNTIL... ;

A.6.1.2410 VARIABLE
Typical use: VARIABLE XYZ

A.6.1.2430 WHILE

Typical use: : X ... BEGIN... fest WHILE ... REPEAT ... ;

A.6.1.2450 WORD
Typical use: char WORD ccc{char)

A.6.1.2500 [
Typicaluse: : X ... [4321] LITERAL... ;

rationale

209

A. Rationale Forth 200x / 18.1

A.6.1.2510 [’]
Typicaluse: : X... ["] name... ;

See: A.6.1.1550 FIND.

A.6.1.2520 [CHAR]
Typicaluse: : X... [CHAR] c... ;

A.6.1.2540]
Typicaluse: : X... [4321] LITERAL... ;

A.6.2 Core extension words

The words in this collection fall into several categories:
— Words that are in common use but are deemed less essential than Core words (e.g., 0<>);
— Words that are in common use but can be trivially defined from Core words (e.g., FALSE);

— Words that are primarily useful in narrowly defined types of applications or are in less frequent use
(e.g., PARSE);

— Words that are being deprecated in favor of new words introduced to solve specific problems.

Because of the varied justifications for inclusion of these words, the committee does not encourage imple-
mentors to offer the complete collection, but to select those words deemed most valuable to their clientele.

A.6.2.0200 . (
Typical use: . (ccc)

A.6.2.0210 .R
In .R, “R” is short for RIGHT.

A.6.2.0340 2>R
The primary advantage of 2>R is that it puts the top stack entry on the top of the return stack.
For instance, a double-cell number may be transferred to the return stack and still have the most
significant cell accessible on the top of the return stack.

A.6.2.0410 2R>
Note that 2R> is not equivalent to R> R>. Instead, it mirrors the action of 2>R (see A.6.2.0340).

A.6.2.0455 :NONAME
Typical use:

DEFER print
:NONAME (n--) . ; ISprint
Note: RECURSE and DOES> are allowed within a : NONAME definition.

A.6.2.0620 ?DO
Typical use:

: X...?2DO... LOOP ... ;

210 rationale

Forth 200x / 18.1 A. Rationale

A.6.2.0700 AGAIN
Typical use: : X ... BEGIN... AGAIN... ;

Unless word-sequence has a way to terminate, this is an endless loop.

A.6.2.0825 BUFFER:

BUFFER: provides a means of defining an uninitialized buffer. In systems that use a single memory
space, this can effectively be defined as:

BUFFER: (u "<name>" -- ; —-- addr)
CREATE ALLOT
’

However, many systems profit from a separation of uninitialized and initialized data areas. Such
systems can implement BUFFER : so that it allocates memory from a separate uninitialized memory
area. Embedded systems can take advantage of the lack of initialization of the memory area while
hosted systems are permitted to ALLOCATE a buffer. A system may select a region of memory for
performance reasons. A detailed knowledge of the memory allocation within the system is required
to provide a version of BUFFER: that can take advantage of the system.

It should be noted that the memory buffer provided by BUFFER : is not initialized by the system and
that if the application requires it to be initialized, it is the responsibility of the application to initialize
it.

A.6.2.0855 c"
Typicaluse: : X... C" ccc" ... ;

See: A.3.1.3.4 Counted strings.

A.6.2.0873 CASE
Typical use:

XL
CASE
test] OF ... ENDOF
testn OF ... ENDOF
(default)
ENDCASE. ...
7
A.6.2.0945 COMPILE,
COMPILE, is the compilation equivalent of EXECUTE.

In traditional threaded-code implementations, compilation is performed by , (comma). This usage
is not portable; it doesn’t work for subroutine-threaded, native code, or relocatable implementations.
Use of COMPILE, is portable.

In most systems it is possible to implement COMPILE, so it will generate code that is optimized
to the same extent as code that is generated by the normal compilation process. However, in some
implementations there are two different “tokens” corresponding to a particular definition name: the
normal “execution token” that is used while interpreting or with EXECUTE, and another “compilation

rationale 211

A. Rationale Forth 200x / 18.1

token” that is used while compiling. It is not always possible to obtain the compilation token from the
execution token. In these implementations, COMPILE, might not generate code that is as efficient
as normally compiled code.

The intention is that COMPILE, can be used as follows to write the classic interpreter/compiler loop:

.. (c—addr)
FIND ?DUP IF (xt +-1)
STATE @ IF (xt +-1)
0> IF EXECUTE ELSE COMPILE, THEN (222)
ELSE (xt +-1)
DROP EXECUTE (2727)
THEN
ELSE (c—addr)
(whatever you do for an undefined word)
THEN

Thus the interpretation semantics are left undefined, as COMPILE, will not be executed during
interpretation.

A.6.2.1342 ENDCASE
Typical use:

: XL
CASE
test] OF ... ENDOF
testn OF ... ENDOF
(default)
ENDCASE ...

A.6.2.1343 ENDOF
Typical use:

XL
CASE
test] OF ... ENDOF
testn OF ... ENDOF
(default)
ENDCASE ...

A.6.2.1850 MARKER
As dictionary implementations have become more elaborate and in some cases have used multiple
address spaces, FORGET has become prohibitively difficult or impossible to implement on many
Forth systems. MARKER greatly eases the problem by making it possible for the system to remember
“landmark information” in advance that specifically marks the spots where the dictionary may at
some future time have to be rearranged.

212 rationale

Forth 200x / 18.1 A. Rationale

A.6.2.1950 OF
Typical use:
XL
CASE
test] OF ... ENDOF
testn OF ... ENDOF

(default)
ENDCASE ...

A.6.2.2000 PAD

PAD has been available as scratch storage for strings since the earliest Forth implementations. It was
brought to our attention that many programmers are reluctant to use PAD, fearing incompatibilities
with system uses. PAD is specifically intended as a programmer convenience, however, which is why
we documented the fact that no standard words use it.

A.6.2.2008 PARSE
Typical use: char PARSE ccc{char)

The traditional Forth word for parsing is WORD. PARSE solves the following problems with WORD:

a) WORD always skips leading delimiters. This behavior is appropriate for use by the text inter-
preter, which looks for sequences of non-blank characters, but is inappropriate for use by words
like (, . (,and .". Consider the following (flawed) definition of . (:

: .([CHAR]) WORD COUNT TYPE ; IMMEDIATE
This works fine when used in a line like:
. (HELLO) 5.
but consider what happens if the user enters an empty string:
() 5.

The definition of . (shown above would treat the) as a leading delimiter, skip it, and continue
consuming characters until it located another) that followed a non-) character, or until the
parse area was empty. In the example shown, the 5 . would be treated as part of the string to
be printed.

With PARSE, we could write a correct definition of . (:
: . ([CHAR]) PARSE TYPE; IMMEDIATE
This definition avoids the “empty string” anomaly.
b) WORD returns its result as a counted string. This has four bad effects:

1) The characters accepted by WORD must be copied from the input buffer into a transient
buffer, in order to make room for the count character that must be at the beginning of the
counted string. The copy step is inefficient, compared to PARSE, which leaves the string
in the input buffer and doesn’t need to copy it anywhere.

rationale 213

A. Rationale Forth 200x / 18.1

2) WORD must be careful not to store too many characters into the transient buffer, thus
overwriting something beyond the end of the buffer. This adds to the overhead of the copy
step. (WORD may have to scan a lot of characters before finding the trailing delimiter.)

3) The count character limits the length of the string returned by WORD to 255 characters
(longer strings can easily be stored in blocks!). This limitation does not exist for PARSE.

4) The transient buffer is typically overwritten by the next use of WORD.

The need for WORD has largely been eliminated by PARSE and PARSE—NAME. WORD is retained
for backward compatibility.

A.6.2.2030 PICK
0 PICK is equivalent to DUP and 1 PICK is equivalent to OVER.

A.6.2.2125 REFILL
REFILL is designed to behave reasonably for all possible input sources. If the input source is
coming from the user, REFILL could still return a false value if, for instance, a communication
channel closes so that the system knows that no more input will be available.

A.6.2.2150 ROLL
2 ROLL is equivalent to ROT, 1 ROLL is equivalent to SWAP and 0 ROLL is a null operation.

A.6.2.2182 SAVE-INPUT
SAVE-INPUT and RESTORE—-INPUT allow the same degree of input source repositioning within a
text file as is available with BLOCK input. SAVE—INPUT and RESTORE—-INPUT ‘“hide the details”
of the operations necessary to accomplish this repositioning, and are used the same way with all
input sources. This makes it easier for programs to reposition the input source, because they do not
have to inspect several variables and take different action depending on the values of those variables.

SAVE-INPUT and RESTORE—INPUT are intended for repositioning within a single input source;
for example, the following scenario is NOT allowed for a Standard Program:

XX

SAVE-INPUT CREATE

S" RESTORE-INPUT" EVALUATE
ABORT" couldn’t restore input"

7
This is incorrect because, at the time RESTORE—-INPUT is executed, the input source is the string

via EVALUATE, which is not the same input source that was in effect when SAVE-INPUT was
executed.

The following code is allowed:

XX

SAVE-INPUT CREATE

S" .(Hello)" EVALUATE

RESTORE-INPUT ABORT" couldn’t restore input"

214 rationale

Forth 200x / 18.1 A. Rationale

After EVALUATE returns, the input source specification is restored to its previous state, thus SAVE—
INPUT and RESTORE—-INPUT are called with the same input source in effect.

In the above examples, the EVALUATE phrase could have been replaced by a phrase involving
INCLUDE-FILE and the same rules would apply.

The standard does not specify what happens if a program violates the above rules. A Standard System
might check for the violation and return an exception indication from RESTORE—-INPUT, or it might
fail in an unpredictable way.

The return value from RESTORE—~INPUT is primarily intended to report the case where the program
attempts to restore the position of an input source whose position cannot be restored. The keyboard
might be such an input source.

Nesting of SAVE-INPUT and RESTORE—-INPUT is allowed. For example, the following situation
works as expected:

XX

SAVE-INPUT
S" f1" INCLUDED
\ The file "f1" includes:
\ e SAVE-INPUT ... RESTORE-INPUT
\ End of file "f1"

RESTORE-INPUT ABORT" couldn’t restore input"

7
In principle, RESTORE—INPUT could be implemented to “always fail”, e.g.:

RESTORE-INPUT (x1 ... xn n —-- flag)
0 ?DO DROP LOOP TRUE
’
Such an implementation would not be useful in most cases. It would be preferable for a system to
leave SAVE—-INPUT and RESTORE-INPUT undefined, rather than to create a useless implement-

ation. In the absence of the words, the application programmer could choose whether or not to create
“dummy”” implementations or to work-around the problem in some other way.

Examples of how an implementation might use the return values from SAVE—INPUT to accomplish
the save/restore function:

Input Source possible stack values

block >IN@ BLKQ@ 2
EVALUATE >IN@ 1

keyboard >INQ 1

text file >IN@ lo-pos hi-pos 3

These are examples only; a Standard Program may not assume any particular meaning for the
individual stack items returned by SAVE—-INPUT.

rationale 215

A. Rationale Forth 200x / 18.1

A.6.2.2295 TO
Typical use: x TO name

Some implementations of TO do not parse; instead they set a mode flag that is tested by the subsequent
execution of name. Standard programs must use TO as if it parses. Therefore TO and name must be
contiguous and on the same line in the source text.

A.6.2.2298 TRUE
TRUE is equivalent to the phrase 0 0=.

A.6.2.2405 VALUE
Typical use:

0 VALUE data
EXCHANGE (nl -- n2) data SWAP TO data ;
EXCHANGE leaves n; in data and returns the prior value n,.

A.6.2.2440 WITHIN
We describe WITHIN without mentioning circular number spaces (an undefined term) or providing
the code. Here is a number line with the overflow point (o) at the far right and the underflow point
(u) at the far left:

u o

There are two cases to consider: either the n, | u,...n; | u; range straddles the overflow/underflow
points or it does not. Lets examine the non-straddle case first:

ypu— y—— 0

The [denotes n; | u,, the) denotes n; | u3, and the dots and [are numbers WITHIN the range. n; | u;
is greater than n, | u,, so the following tests will determine if n; | u; is WITHIN n, | u, and n3 | us:

nyluy, <mjluyandn; lu; <nzlug

In the case where the comparison range straddles the overflow/underflow points:

n3 | us is less than n; | u, and the following tests will determine if n; | u; is WITHIN n, | u, and
n; [us:

nzluzgnl|M]OI'VZ]|M]<VZ3|M3.

WITHIN must work for both signed and unsigned arguments. One obvious implementation does not
work:

WITHIN (test low high -- flag)
>R OVER < 0= (test flagl) SWAP R> < (flagl flag2) AND

7
Assume a 16-bit machine, and consider the following test:

33000 32000 34000 WITHIN

216 rationale

Forth 200x / 18.1 A. Rationale

The above implementation returns false for that test, even though the unsigned number 33000 is
clearly within the range { {32000 ... 34000} }.

The problem is that, in the incorrect implementation, the signed comparison < gives the wrong
answer when 32000 is compared to 33000, because when those numbers are treated as signed
numbers, 33000 is treated as negative 32536, while 32000 remains positive.

Replacing < with U< in the above implementation makes it work with unsigned numbers, but causes
problems with certain signed number ranges; in particular, the test:

1 -5 5 WITHIN
would give an incorrect answer.
The following implementation works in all cases:

: WITHIN (test low high -- flag)
OVER - >R — R> U<

A.6.2.2530 [COMPILE]
Typical use: : name2 ... [COMPILE] namel ... ; IMMEDIATE

A.6.2.2535 \
Typical use:

5 CONSTANT THAT \ This is a comment about THAT

A.7 The optional Block word set

Early Forth systems ran without a host OS; these are known as native systems. Such systems provide
mass storage in blocks of 1024 bytes. The Block Word set includes the most common words for accessing
program source and data on disk.

A.7.2 Additional terms
block

Forth systems may use blocks to contain program source. Conventionally such blocks are formatted
for editing as 16 lines of 64 characters. Source blocks are often referred to as “screens”.

A.7.3 Additional usage requirements
A.7.3.2 Block buffer regions

While the standard does not address multitasking per se, the items listed in 7.3.2 Block buffer regions that
may render block-buffer addresses invalid are due to multitasking considerations. The standard restricts
programs such that items that could fail on multitasking systems are not standard usage. It also permits
multitasking systems to be declared standard systems.

rationale 217

A. Rationale Forth 200x / 18.1

A.7.6 Glossary

A.7.6.2.2190 SCR
SCR is short for screen.

A.8 The optional Double-Number word set

Forth systems on 8-bit and 16-bit processors often find it necessary to deal with double-length numbers.
But many Forths on small embedded systems do not, and many users of Forth on systems with a cell size
of 32-bits or more find that the necessity for double-length numbers is much diminished. Therefore, we
have factored the words that manipulate double-length entities into this optional word set.

Please note that the naming convention used in this word set conveys some important information:

1. Words whose names are of the form 2xxx deal with cell pairs, where the relationship between the
cells is unspecified. They may be two-vectors, double-length numbers, or any pair of cells that it is
convenient to manipulate together.

2. Words with names of the form Dxxx deal specifically with double-length integers.

3. Words with names of the form Mxxx deal with some combination of single and double integers. The
order in which these appear on the stack is determined by long-standing common practice.

Refer to A.3.1 for a discussion of data types in Forth.

A.8.6 Glossary

A.8.6.1.0360 2CONSTANT
Typical use: x1 x2 2CONSTANT name

A.8.6.1.0390 2LITERAL
Typicaluse: : X ... [x1 x2] 2LITERAL... ;

A.8.6.1.0440 2VARIABLE
Typical use: 2VARIABLE name

A.8.6.1.1070 D.R
In D.R, the “R” is short for RIGHT.

A.8.6.1.1140 D>s

An alias for DROP that conveys the intent to convert a double-cell to a single-cell integer. The original
intention of this word was to support signed-number representations other than two’s complement.

A.8.6.1.1820 Mx/

M=x / was once described by Chuck Moore as the most useful arithmetic operator in Forth. It is the
main workhorse in most computations involving double-cell numbers. Note that some systems allow
signed divisors. This can cost a lot in performance on some CPUs. The requirement for a positive
divisor has not proven to be a problem.

A.8.6.1.1830 M+
M+ is the classical method for integrating.

218 rationale

Forth 200x / 18.1 A. Rationale

A.8.6.2.0435 2VALUE
Typical use:

fnl S" filename" ;
fnl 2VALUE myfile
myfile INCLUDED

fn2 S" filename2" ;
fn2 TO myfile
myfile INCLUDED

A.9 The optional Exception word set

CATCH and THROW provide a reliable mechanism for handling exceptions, without having to propagate
exception flags through multiple levels of word nesting. It is similar in spirit to the “non-local return”
mechanisms of many other languages, such as C’s set jmp () and longjmp (), and LISP’s CATCH and
THROW. In the Forth context, THROW may be described as a “multi-level EXIT”, with CATCH marking a
location to which a THROW may return.

Several similar Forth “multi-level EXIT” exception-handling schemes have been described and used in
past years. It is not possible to implement such a scheme using only standard words (other than CATCH
and THROW), because there is no portable way to “unwind” the return stack to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and ABORT ",
allowing an application to define, through the use of CATCH, the behavior in the event of a system ABORT.

CATCH and THROW provide a convenient way for an implementation to “clean up” the state of open files if
an exception occurs during the text interpretation of a file with INCLUDE-FILE. The implementation of
INCLUDE-FILE may guard (with CATCH) the word that performs the text interpretation, and if CATCH
returns an exception code, the file may be closed and the exception reTHROWn so that the files being
included at an outer nesting level may be closed also. Note that the standard allows, but does not require,
INCLUDE-FILE to close its open files if an exception occurs. However, it does require INCLUDE-FILE
to unnest the input source specification if an exception is THROWn.

A.9.3 Additional usage requirements

One important use of an exception handler is to maintain program control under many conditions which
ABORT. This is practicable only if a range of codes is reserved. Note that an application may overload many
standard words in such a way as to THROW ambiguous conditions not normally THROWn by a particular
system.

A.9.3.6 Exception handling

The method of accomplishing this coupling is implementation dependent. For example, LOAD could
“know” about CATCH and THROW (by using CATCH itself, for example), or CATCH and THROW could
“know”” about LOAD (by maintaining input source nesting information in a data structure known to THROW,
for example). Under these circumstances it is not possible for a Standard Program to define words such as
LOAD in a completely portable way.

rationale 219

A. Rationale Forth 200x / 18.1

A.9.6 Glossary
A.9.6.1.2275 THROW

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had
returned it. In that case, the stack depth is the same as it was just before CATCH began execution.
The values of the i *x stack arguments could have been modified arbitrarily during the execution of
xt. In general, nothing useful may be done with those stack items, but since their number is known
(because the stack depth is deterministic), the application may DROP them to return to a predictable
stack state.

Typical use:
could-fail (—-- char)
KEY DUP [CHAR] Q = IF 1 THROW THEN ;
do-it (a b —— <) 2DROP could-fail ;

otry-it (—-)
1 2 [’] do-it CATCH IF

(x1 x2) 2DROP ." There was an exception" CR
ELSE ." The character was " EMIT CR
THEN

; retry-it (-——)
BEGIN 1 2 [’] do-it CATCH WHILE
(x1 x2) 2DROP ." Exception, keep trying" CR
REPEAT (char)
." The character was " EMIT CR

4

A.10 The optional Facility word set

A.10.6 Glossary
A.10.6.1.1755 KEY?

The committee has gone around several times on the stack effects. Whatever is decided will violate
somebody’s practice and penalize some machine. This way doesn’t interfere with type-ahead on
some systems, while requiring the implementation of a single-character buffer on machines where
polling the keyboard inevitably results in the destruction of the character.

Use of KEY or KEY ? indicates that the application does not wish to process non-character events, so
they are discarded, in anticipation of eventually receiving a valid character. Applications wishing to
handle non-character events must use EKEY and EKEY ?. It is possible to mix uses of KEY ?/KEY and
EKEY?/EKEY within a single application, but the application must use KEY? and KEY only when it
wishes to discard non-character events until a valid character is received.

220

rationale

Forth 200x / 18.1 A. Rationale

A.10.6.2.0135 +FIELD

+FIELD is not required to align items. This is deliberate and allows the construction of unaligned
data structures for communication with external elements such as a hardware register map or protocol
packet. Field alignment has been left to the appropriate X IELD : definition.

A.10.6.2.0763 BEGIN-STRUCTURE

There are two schools of thought regarding named data structures: name first and name last. The
name last school can define a named data structure as follows:

0 \ initial total byte count
1 CELLS +FIELD p.x \ A single cell filed named p.x
1 CELLS +FIELD p.y \ A single cell field named p.y
CONSTANT point \ save structure size

‘While the name first school would define the same data structure as:

BEGIN-STRUCTURE point \ create the named structure
1 CELLS +FIELD p.x \ A single cell filed named p.x

1 CELLS +FIEILD p.y \ A single cell field named p.y
END-STRUCTURE

Although many systems provide a name first structure there is no common practice to the words used.
The words BEGIN-STRUCTURE and END-STRUCTURE have been defied as a means of providing
a portable notation that does not conflict with existing systems.

The field defining words (x* IELD : and +FIELD) are defined so they can be used by both schools.
Compatibility between the two schools comes from defining a new stack item struct-sys, which is
implementation dependent and can be O or more cells. The name first school would provide an

address (addr) as the struct-sys parameter, while the name last school would defined struct-sys as
being empty.

Executing the name of the data structure, returns the size of the data structure. This allows the data
stricture to be used within another data structure:

BEGIN-STRUCTURE point \ -- a-addr 0 ; —-- lenp
FIELD: p.x \ —— a-addr cell
FIELD: p.y \ —— a-addr cell«2

END-STRUCTURE

BEGIN-STRUCTURE rect \ —— a-addr 0 ; —-- lenr
point +FIELD r.tlhc \ —— a-addr cellx2
point +FIELD r.brhc \ —— a-addr cellx4

END-STRUCTURE
Alignment:
In practice, structures are used for two different purposes with incompatible requirements:

a) For collecting related internal-use data into a convenient “package” that can be referred to by

a single “handle”. For this use, alignment is important, so that efficient native fetch and store
instructions can be used.

rationale

221

A. Rationale Forth 200x / 18.1

b) For mapping external data structures like hardware register maps and protocol packets. For this
use, automatic alignment is inappropriate, because the alignment of the external data structure
often doesn’t match the rules for a given processor.

Many languages cater for the first use, but ignore the second. This leads to various customized
solutions, usage requirements, portability problems, bugs, etc. +FIELD is defined to be non-align-
ing, while the named field defining words (X IELD :) are aligning. This is intentional and allows for
both uses.

The standard currently defines an aligned field defining word for each of the standard data types:

CFIELD: a character
FIELD: anative integer (single cell)
FFIELD: anative float
SFFIELD: a 32 bit float
DFFIELD: a 64 bit float

Although this is a sufficient set, most systems provide facilities to define field defining words for
standard data types.

Future:
The following cannot be defined until the required addressing has been defined. The names should
be considered reserved until then.

BFIELD: 1 byte (8 bit) field
WFIELD: 16 bitfield
LFIELD: 32 bitfield
XFIELD: 64 bit field

A.10.6.2.1305 EKEY

For some input devices, such as keyboards, more information is available than can be returned by a
single execution of KEY. EKEY provides a standard word to access a system-dependent set of events.

EKEY and EKEY ? are implementation specific; no assumption can be made regarding the interaction
between the pairs EKEY/EKEY? and KEY/KEY ?. This standard does not define a timing relationship
between KEY? and EKEY?. Undefined results may be avoided by using only one pairing of KEY/
KEY? or EKEY/EKEY? in a program for each input stream.

EKEY assumes no particular numerical correspondence between particular event code values and
the values representing standard characters. On some systems, this may allow two separate keys
that correspond to the same standard character to be distinguished from one another. A standard
program may only interpret the results of EKEY via the translation words provided for that purpose
(EKEY>CHAR and EKEY>FKEY).

See: A.6.1.1750 KEY, 10.6.2.1306 EKEY>CHAR and 10.6.2.1306.40 EXEY>FKEY.

A.10.6.2.1306 EKEY>CHAR
EKEY>CHAR translates a keyboard event into the corresponding member of the character set, if such
a correspondence exists for that event.

It is possible that several different keyboard events may correspond to the same character, and other
keyboard events may correspond to no character.

222 rationale

Forth 200x / 18.1

A. Rationale

A.10.6.2.1306.40 EKEY>FKEY

EKEY produces an abstract cell type for a keyboard event (e.g., a keyboard scan code). EKEY>FKEY
checks if such an event corresponds to a special (non-graphic) key press, and if so, returns a code
for the special key press. The encoding of special keys (returned by EKEY>FKEY) may be different
from the encoding of these keys as keyboard events (input to EKEY>FKEY).

Typical Use:

... EKEY EKEY>FKEY IF
CASE

K-UP OF ... ENDOF

K-F1 OF ... ENDOF

K-LEFT K-SHIFT-MASK OR K-CTRL-MASK OR OF ... ENDOF

ENDCASE
ELSE

THEN

The codes for the special keys are system-dependent, but this standard provides words for getting the

key codes for a number of keys:

Word Key Word Key

K-F1 Fl K-LEFT cursor left
K-F2 F2 K-RIGHT cursor right
K-F3 F3 K-UP cursor up
K-F4 F4 K-DOWN cursor down
K-F5 F5 K—-HOME home or Pos1
K-F6 F6 K-END End

K-F7 F7 K-PRIOR PgUp or Prior
K-F8 F8 K-NEXT PgDn or Next
K-F9 F9 K—-INSERT Insert
K-F10 FIO K-DELETE Delete
K-F11 Fl1l

K-F12 F12

In addition, you can get codes for shifted variants of these keys by ORing with K—-SHIFT-MASK,
K-CTRL-MASK and/or K-ALT-MASK, e.g. K—~CTRL-MASK K-ALT-MASK OR K-DELETE OR.

The masks for the shift keys are:

Word Key
K-SHIFT-MASK Shift
K-CTRL-MASK Ctrl
K-ALT-MASK Alt

Note that not all of these keys are available on all systems, and not all combinations of keys and shift
keys are available. Therefore programs should be written such that they continue to work (although
less conveniently or with less functionality) if these key combinations cannot be produced.

rationale

223

ed18

A. Rationale Forth 200x / 18.1

A10.6.2.1325 EMIT?

An indefinite delay is a device related condition, such as printer off-line, that requires operator
intervention before the device will accept new data.

A.10.6.2.1518 FIELD:

Create an aligned single-cell field in a data structure.
The various xF IELD : words provide for different alignment and size allocation.

The xFIELD : words could be defined as:

: FIELD: (nl "name" -- n2 ; addrl -- addr2) ALIGNED 1CELLS +FIELD ;
: CFIELD: (nl "name" --n2;addrl -- addr2) 1 CHARS +FIELD ;
: FFIELD: (nl "name" -- n2 ; addrl -- addr2) FALIGNED 1FLOATS +FIELD ;

: SFFIELD: (nl "name" -- n2 ; addrl -- addr2) SFALIGNED 1 SFLOATS +FIELD ;
: DFFIELD: (nl "name" --n2 ; addrl -- addr2) DFALIGNED 1| DFLOATS +FIELD ;

A.10.6.2.1905 Ms

Although their frequencies vary, every system has a clock. Since many programs need to time
intervals, this word is offered. Use of milliseconds as an internal unit of time is a practical “least
common denominator” external unit. It is assumed implementors will use “clock ticks” (whatever
size they are) as an internal unit and convert as appropriate.

A.10.6.2.2292 TIME&DATE
Most systems have a real-time clock/calendar. This word gives portable access to it.

A.11 The optional File-Access word set

A.11.3 Additional usage requirements
A.11.3.2 Blocks in files

Many systems reuse file identifiers; when a file is closed, a subsequently opened file may be given the same
identifier. If the original file has blocks still in block buffers, these will be incorrectly associated with the
newly opened file with disastrous results. The block buffer system must be flushed to avoid this.

A.11.3.4 Other-transientregions

224 rationale

Forth 200x / 18.1 A. Rationale

A.11.6 Glossary

A.11.6.1.0765 BIN
Some operating systems require that files be opened in a different mode to access their contents as
an unstructured stream of binary data rather than as a sequence of lines.

The arguments to READ-FILE and WRITE-FILE are arrays of character storage elements, each
element consisting of at least 8 bits. The committee intends that, in BIN mode, the contents of these
storage elements can be written to a file and later read back without alteration.

A.11.6.1.1010 CREATE-FILE
Typical use:

:X... S"TEST.FTH" R/W CREATE-FILE ABORT" CREATE-FILE FAILED" ;

A.11.6.1.1717 INCLUDE-FILE
Here are two implementation alternatives for saving the input source specification in the presence of
text file input:

1) Save the file position (as returned by FILE-POSITION) of the beginning of the line being
interpreted. To restore the input source specification, seek to that position and re-read the line
into the input buffer.

2) Allocate a separate line buffer for each active text input file, using that buffer as the input
buffer. This method avoids the “seek and reread” step, and allows the use of “pseudo-files”
such as pipes and other sequential-access-only communication channels.

A.11.6.1.1718 INCLUDED
Typical use: ... S" filename" INCLUDED...

A.11.6.1.1970 OPEN-FILE
Typical use:

:X...S" TEST.FTH" R/WOPEN-FILE ABORT" OPEN-FILE FAILED"... ;

A.11.6.1.2080 READ-FILE
A typical sequential file-processing algorithm might look like:

BEGIN ()
READ-FILE THROW (length)
?DUP WHILE (length)
... ()
REPEAT ()

In this example, THROW is used to handle exception conditions, which are reported as non-zero values
of the ior return value from READ-F ILE. End-of-file is reported as a zero value of the “length” return
value.

A.11.6.1.2090 READ-LINE
Implementations are allowed to store the line terminator in the memory buffer in order to allow the
use of line reading functions provided by host operating systems, some of which store the terminator.
Without this provision, a transient buffer might be needed. The two-character limitation is sufficient

rationale 225

A. Rationale Forth 200x / 18.1

for the vast majority of existing operating systems. Implementations on host operating systems
whose line terminator sequence is longer than two characters may have to take special action to
prevent the storage of more than two terminator characters.

Standard Programs may not depend on the presence of any such terminator sequence in the buffer.

A typical line-oriented sequential file-processing algorithm might look like:

BEGIN ()
READ-LINE THROW (length not-eof-flag)
WHILE (length)
. ()
REPEAT DROP ()

READ-LINE needs a separate end-of-file flag because empty (zero-length) lines are a routine occur-
rence, so a zero-length line cannot be used to signify end-of-file.

e A.11.6.1.2165 s"

A.11.6.2.1714 INCLUDE
Typical use:

INCLUDE filename

A.11.6.2.2144.10 REQUIRE
Typical use:

REQUIRE filename

A.11.6.2.2144.50 REQUIRED
Typical use:

S" filename" REQUIRED

A.12 The optional Floating-Point word set

The current base for floating-point input must be DECIMAL. Floating-point input is not allowed in an
arbitrary base. All floating-point numbers to be interpreted by a standard system must contain the exponent
indicator “E” (see 12.3.7 Text interpreter input number conversion). Consensus in the committee

226 rationale

Forth 200x / 18.1 A. Rationale

deemed this form of floating-point input to be in more common use than the alternative that would have
a floating-point input mode that would allow numbers with embedded decimal points to be treated as
floating-point numbers.

Although the format and precision of the significand and the format and range of the exponent of a floating-
point number are implementation defined in Forth-2012, the Floating-Point Extensions word set contains
the words DF@, SF@, DF !, and SF'! for fetching and storing double- and single-precision IEEE floating-
point-format numbers to memory. The IEEE floating-point format is commonly used by numeric math
co-processors and for exchange of floating-point data between programs and systems.

A.12.3 Additional usage requirements
A.12.3.5 Address alignment

In defining custom floating-point data structures, be aware that CREATE doesn’t necessarily leave the data
space pointer aligned for various floating-point data types. Programs may comply with the requirement for
the various kinds of floating-point alignment by specifying the appropriate alignment both at compile-time
and execution time. For example:

FCONSTANT (F: r ——)
CREATE FALIGN HERE 1 FLOATS ALLOT F!
DOES> (F: —— r) FALIGNED FQ ;

A.12.3.7 Text interpreter input number conversion

The committee has more than once received the suggestion that the text interpreter in standard Forth
systems should treat numbers that have an embedded decimal point, but no exponent, as floating-point
numbers rather than double cell numbers. This suggestion, although it has merit, has always been voted
down because it would break too much existing code; many existing implementations put the full digit
string on the stack as a double number and use other means to inform the application of the location of the
decimal point.

A.12.6 Glossary

A.12.6.1.0558 >FLOAT

>FLOAT enables programs to read floating-point data in legible ASCII format. It accepts a much
broader syntax than does the text interpreter since the latter defines rules for composing source
programs whereas >FLOAT defines rules for accepting data. >FLOAT is defined as broadly as is
feasible to permit input of data from Forth-2012 systems as well as other widely used standard
programming environments.

This is a synthesis of common FORTRAN practice. Embedded spaces are explicitly forbidden in
much scientific usage, as are other field separators such as comma or slash.

While >FLOAT is not required to treat a string of blanks as zero, this behavior is strongly encouraged,
since a future version of this standard may include such a requirement.

A.12.6.1.1492 FCONSTANT
Typical use: r FCONSTANT name

rationale 227

A. Rationale Forth 200x / 18.1

A.12.6.1.1552 FLITERAL

Typicaluse: : X... [... (r)] FLITERAL... ;

A.12.6.1.1630 FVARIABLE

Typical use: FVARIABLE name

A.12.6.1.2143 REPRESENT

This word provides a primitive for floating-point display. Some floating-point formats, including
those specified by IEEE-754, allow representations of numbers outside of an implementation-defined
range. These include plus and minus infinities, denormalized numbers, and others. In these cases we
expect that REPRESENT will usually be implemented to return appropriate character strings, such
as “+infinity” or “nan”, possibly truncated.

A12.6.2.1427 F.

For example, 1E3 F. displays 1000.

A.12.6.2.1489 FATAN2

FSINCOS and FATAN2 are a complementary pair of operators which convert angles to 2-vectors
and vice-versa. They are essential to most geometric and physical applications since they correctly
and unambiguously handle this conversion in all cases except null vectors, even when the tangent of
the angle would be infinite.

FSINCOS returns a Cartesian unit vector in the direction of the given angle, measured counter-
clockwise from the positive X-axis. The order of results on the stack, namely y underneath x, permits
the 2-vector data type to be additionally viewed and used as a ratio approximating the tangent of the
angle. Thus the phrase FSINCOS F/ is functionally equivalent to FTAN, but is useful over only a
limited and discontinuous range of angles, whereas FSINCOS and FATAN2 are useful for all angles.

The argument order for FATAN2 is the same, converting a vector in the conventional representation
to a scalar angle. Thus, for all angles, FSINCOS FATANZ2 is an identity within the accuracy of the
arithmetic and the argument range of FSINCOS. Note that while FSINCOS always returns a valid
unit vector, FATAN2 will accept any non-null vector. An ambiguous condition exists if the vector
argument to FATAN2 has zero magnitude.

A.12.6.2.1516 FEXPM1

This function allows accurate computation when its arguments are close to zero, and provides a useful
base for the standard exponential functions. Hyperbolic functions such as sinh(x) can be efficiently
and accurately implemented by using FEXPM1; accuracy is lost in this function for small values of x
if the word FEXP is used.

An important application of this word is in finance; say a loan is repaid at 15% per year; what is the
daily rate? On a computer with single-precision (six decimal digit) accuracy:

1. Using FLN and FEXP:

FLN of 1.15=0.139762,

divide by 365 = 3.82910E-4,

form the exponent using FEXP = 1.00038, and
subtract one (1) and convert to percentage = 0.038%.

228

rationale

Forth 200x / 18.1 A. Rationale

Thus we only have two-digit accuracy.
2. Using FLNP1 and FEXPM1:

FLNP1 of 0.15 = 0.139762, (this is the same value as in the first example, although with the
argument closer to zero it may not be so)

divide by 365 = 3.82910E-4,

form the exponent and subtract one (1) using FEXPM1 = 3.82983E-4, and

convert to percentage = 0.0382983%.

This calculation method allows the hyperbolic functions to be computed with six-digit accuracy. For
example, sinh can be defined as:

FSINH (rl —— r2)
FEXPM1 FDUP FDUP 1.0E0 F+ F/ F+ 2.0E0 F/ ;

A.12.6.2.1554 FLNP1
This function allows accurate compilation when its arguments are close to zero, and provides a useful
base for the standard logarithmic functions. For example, FLN can be implemented as:
FLN 1.0E0 F- FLNP1 ;
See: A.12.6.2.1516 FEXPM1.

A.12.6.2.1640 F~

This provides the three types of “floating point equality” in common use — “close” in absolute terms,
exact equality as represented, and “relatively close”.

A.13 The optional Locals word set

A.13.3 Additional usage requirements

Rule 13.3.3.2d could be relaxed without affecting the integrity of the rest of this structure. 13.3.3.2c could
not be.

13.3.3.2b forbids the use of the data stack for local storage because no usage rules have been articulated
for programmer users in such a case. Of course, if the data stack is somehow employed in such a way that
there are no usage rules, then the locals are invisible to the programmer, are logically not on the stack, and
the implementation conforms.

Access to previously declared local variables is prohibited by Section 13.3.3.2d until any data placed onto
the return stack by the application has been removed, due to the possible use of the return stack for storage
of locals.

Authorization for a Standard Program to manipulate the return stack (e.g., via >R R>) while local variables
are active overly constrains implementation possibilities. The consensus of users of locals was that Local
facilities represent an effective functional replacement for return stack manipulation, and restriction of
standard usage to only one method was reasonable.

Access to Locals within DO...LOOPs is expressly permitted as an additional requirement of conforming
systems by Section 13.3.3.2g. Although words, such as (LOCAL), written by a System Implementor, may

rationale 229

A. Rationale Forth 200x / 18.1

require inside knowledge of the internal structure of the return stack, such knowledge is not required of a
user of compliant Forth systems.

A.13.6 Glossary

A.13.6.2.2550 {:

The Forth 94 Technical Committee was unable to identify any common practice for locals. It
provided a way to define locals and a method of parsing them in the hope that a common practice
would emerge.

Since then, common practice has emerged. Most implementations that provide (LOCAL) and
LOCALS | also provide some form of the { ... } notation; however, the phrase { ...} conflicts
with other systems. The { : ... :} notation is a compromise to avoid name conflicts.

The notation provides for different kinds of local: those that are initialized from the data stack at
run-time, uninitialized locals, and outputs. Initialized locals are separated from uninitialized locals
by ‘|’. The definition of locals is terminated by ‘——"or “: }’.

All text between ‘——"and : }’ is ignored. This eases documentation by allowing a complete stack
comment in the locals definition.

The ‘|’ (ASCII $7C) character is widely used as the separator between local arguments and local
values. Some implementations have used ‘\’ (ASCII $5C) or ‘|’ ($A6). Systems are free to
continue to provide these alternative separators. However, only the recognition of the ‘|’ separator
is mandatory. Therefore portable programs must use the ‘|’ separator.

A number of systems extend the locals notation in various ways. Some of these extensions may
emerge as common practice. This standard has reserved the notation used by these extensions to
avoid difficulties when porting code to these systems. In particular local names ending in ‘:” (colon),
‘[’ (open bracket), or ‘~’ (caret) are reserved.

A.14 The optional Memory-Allocation word set

The Memory-Allocation word set provides a means for acquiring memory other than the contiguous data
space that is allocated by ALLOT. In many operating system environments it is inappropriate for a process
to pre-allocate large amounts of contiguous memory (as would be necessary for the use of ALLOT). The
Memory-Allocation word set can acquire memory from the system at any time, without knowing in advance
the address of the memory that will be acquired.

A.15 The optional Programming-Tools word set

These words have been in widespread common use since the earliest Forth systems.

Although there are environmental dependencies intrinsic to programs using an assembler, virtually all Forth
systems provide such a capability. Insofar as many Forth programs are intended for real-time applications
and are intrinsically non-portable for this reason, the committee believes that providing a standard window
into assemblers is a useful contribution to Forth programmers.

Similarly, the programming aids DUMP, etc., are valuable tools even though their specific formats will differ
between CPUs and Forth implementations. These words are primarily intended for use by the programmer,

230 rationale

Forth 200x / 18.1 A. Rationale

and are rarely invoked in programs.

One of the original aims of Forth was to erase the boundary between “user” and “programmer” — to give
all possible power to anyone who had occasion to use a computer. Nothing in the above labeling or remarks
should be construed to mean that this goal has been abandoned.

A.15.3.1 Name tokens

Name tokens are an abstract data type identifying named words. You can use words such as NAME>STRING
to get information out of name tokens.

A.15.6 Glossary

A15.6.1.0220 .s

.S is a debugging convenience found on almost all Forth systems. It is universally mentioned in
Forth texts.

A.15.6.1.2194 SEE

SEE acts as an on-line form of documentation of words, allowing modification of words by decom-
piling and regenerating with appropriate changes.

A.15.6.1.2465 WORDS

WORDS is a debugging convenience found on almost all Forth systems. It is universally referred to
in Forth texts.

A.15.6.2.0470 ; CODE

Typical use: : namex ... (create) ... ; CODE ...

where namex is a defining word, and (create) is CREATE or any user defined word that calls
CREATE.

A.15.6.2.0930 CODE

Some Forth systems implement the assembly function by adding an ASSEMBLER word list to the
search order, using the text interpreter to parse a postfix assembly language with lexical characteris-
tics similar to Forth source code. Typically, in such systems, assembly ends when a word END-CODE
is interpreted.

A.15.6.2.1015 CsS-PICK

The intent is to copy a dest on the control-flow stack so that it can be resolved more than once. For
example:

\ Conditionally transfer control to beginning of
\ loop. This is similar in spirit to C’s "continue"
\ statement.

?REPEAT (dest —— dest) \ Compilation
(flag ——) \ Execution
0 CS-PICK POSTPONE UNTIL
; IMMEDIATE

rationale 231

A. Rationale Forth 200x / 18.1

XX (——) \ Example use of ?REPEAT
BEGIN

flag ?REPEAT (Go back to BEGIN if flag is false)
flag ?REPEAT (Go back to BEGIN if flag is false)

flag UNTIL (Go back to BEGIN if flag is false)
A.15.6.2.1020 CS-ROLL

The intent is to modify the order in which the origs and dests on the control-flow stack are to be
resolved by subsequent control-flow words. For example, WHILE could be implemented in terms of
IF and CS—ROLL, as follows:

WHILE (dest -- orig dest)
POSTPONE IF 1 CS-ROLL
; IMMEDIATE

A.15.6.2.1580 FORGET
Typical use: ... FORGET name ...

FORGET name tries to infer the previous dictionary state from name; this is not always possible. As
a consequence, FORGET name removes name and all following words in the name space.

See A.6.2.1850 MARKER.

A.15.6.2.1908 N>R

An implementation may store the stack items in any manner. It may store them on the return stack,
in any order. A stack-constrained system may prefer to use a buffer to store the items and place a
reference to the buffer on the return stack.

See: 6.2.2182 SAVE-INPUT, 6.2.2148 RESTORE-INPUT, 16.6.1.1647 GET-ORDER,
16.6.1.2197 SET-ORDER.

A.15.6.2.1909.10 NAME>COMPILE

In a traditional xt+immediate-flag system, the x xf returned by NAME>COMP I LE is typically xt/ xz2,
where xt1 is the xt of the word under consideration, and xz2 is the xt of EXECUTE (for immediate
words) or COMPILE, (for words with default compilation semantics).

If you want to POSTPONE nt, you can do so with
NAME>COMPILE SWAP POSTPONE LITERAL COMPILE,

A.15.6.2.2297 TRAVERSE-WORDLIST
Typical use:

WORDS—-COUNT (x nt —-— x’ £) DROP 1+ TRUE ;
0 ’ WORDS-COUNT FORTH-WORDLIST TRAVERSE-WORDLIST

prints a count of the number of words in the FORTH-WORDLIST.

232 rationale

Forth 200x / 18.1 A. Rationale

ALL-WORDS NAME>STRING CR TYPE TRUE ;
’ ALL-WORDS GET-CURRENT TRAVERSE-WORDLIST

prints the names of words in the current compilation wordlist.

CONTAINS—-STRING
NAME>STRING 20VER SEARCH IF CR TYPE THEN FALSE ;
S" COM" ’ CONTAINS-STRING GET-CURRENT TRAVERSE-WORDLIST

prints the name of a word containing the string “COM?”, if it exists, and then terminates.

x:quotations

A15.62.— [:
The essence of quotations is to provide nested colon definitions, in which the inner definition(s) are
nameless. The expression

foo ... [: some words ;] ... ;
is equivalent to

:NONAME some words ; CONSTANT (temp)
foo ... (temp) ... ;

A simple quotation is an anonymous colon definition that is defined inside a colon definition or
quotation.

Their advantage is as a syntactic “sugar” that permits a nameless definition in close proximity to its
use; and that it avoids generating one-use names only for the purpose of referring to the definition
inside another word.

One example use of quotations is to provide a solution to the use of CATCH in a form close to other

languages’ try ... catch blocks.
hex. (u --)
BASE @ >R

[: HEX U. ;] CATCH
R> BASE ! THROW

7
The advantage of using CATCH here is that the BASE is restored even if there is an exception (e.g., a
user interrupt) during the U. .

Moreover, return-address manipulation has often been used as a way to split a definition into several
parts, e.g,:

foo bar list> bla blub ;

where LIST> is a return-address manipulating word and executes the BLA BLUB part of the word
possibly several times. This demonstrates that introducing a helper definition is unattractive to these
programmers; with quotations this code could be written without helper word as

foo bar [: bla blub ;] map-list ;

The advantages of this variant are:

rationale 233

A. Rationale Forth 200x / 18.1

— Implementing quotations puts less restrictions on the Forth system than implementing manipulable
return-addresses (which would restrict tail-call elimination and inlining).

— Itis immediately visible to the reader that there is a separate definition containing BLA BLUB.

A quotation may not be able to access the locals of the outer word because it has no knowledge of
when it might be executed and hence whether outer locals are still alive. It does permit defining and
accessing its own locals. Note that this means that both the quotation and the containing definition
may define locals.

A.15.6.2.2531 [ELSE]
Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2532 [IF]
Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2533 [THEN]
Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

Software that runs in several system environments often contains some source code that is environ-
mentally dependent. Conditional compilation — the selective inclusion or exclusion of portions of
the source code at compile time — is one technique that is often used to assist in the maintenance of
such source code.

Conditional compilation is sometimes done with “smart comments” — definitions that either skip or
do not skip the remainder of the line based on some test. For example:

\ If 16-Bit? contains TRUE, lines preceded by 16BIT\
\ will be skipped. Otherwise, they will not be skipped.

VARIABLE 16-BIT?

16BIT\ (—-) 16-BIT? @ IF POSTPONE \ THEN
; IMMEDIATE

This technique works on a line by line basis, and is good for short, isolated variant code sequences.

More complicated conditional compilation problems suggest a nestable method that can encompass
more than one source line at a time. The words included in the optional Programming tools exten-
sions word set are useful for this purpose.

A.16 The optional Search-Order word set

The search-order word set is intended to be a portable “construction set” from which search-order words
may be built. ALSO/ONLY or the various “vocabulary” schemes supported by the major Forth vendors can
be defined in terms of the primitive search-order word set.

The encoding for word list identifiers wid might be a small-integer index into an array of word-list defi-
nition records, the data-space address of such a record, a user-area offset, the execution token of a sealed
vocabulary, the link-field address of the first definition in a word list, or anything else. It is entirely up to
the system implementor.

234 rationale

Forth 200x / 18.1 A. Rationale

A.16.2 Additional terms and notation
search order

Note that the use of the term “list” does not necessarily imply implementation as a linked list

A.16.3 Additional usage requirements
A.16.3.3 Finding definition names
In other words, the following is not guaranteed to work:
: FOO ... [... SET-CURRENT] ... RECURSE
; IMMEDIATE
RECURSE, ; (semicolon), and IMMEDIATE may or may not need information stored in the compilation
word list.

A.16.6 Glossary

A.16.6.1.2192 SEARCH-WORDLIST

When SEARCH-WORDLIST fails to find the word, it does not return the string, unlike FIND. This
is in accordance with the general principle that Forth words consume their arguments.

A.17 The optional String word set

A.17.6 Glossary

A17.6.1.0245 /STRING

/STRING is used to remove or add characters relative to the current position in the character string.
Positive values of n will exclude characters from the string while negative values of n will include
characters to the left of the string.

s" ABC" 2 /STRING 2DUP TYPE \ outputs “C”
-1 /STRING TYPE \ outputs “BC”

A.17.6.1.0910 CMOVE

If c-addr, lies within the source region (i.e., when c-addr, is not less than c-addr; and c-addr, is less
than the quantity c-addr; u CHARS +), memory propagation occurs.

Assume a character string at address 100: “ABCD”. Then after
100 DUP CHAR+ 3 CMOVE

the string at address 100 is “AAAA”.

See A.6.1.1900 MOVE.

A.17.6.1.0920 CMOVE>

If c-addr; lies within the destination region (i.e., when c-addr; is greater than or equal to c-addr, and
c-addr is less than the quantity c-addr; u CHARS +), memory propagation occurs.

Assume a character string at address 100: “ABCD”. Then after

rationale 235

A. Rationale Forth 200x / 18.1

100 DUP CHAR+ SWAP 3 CMOVE>
the string at address 100 is “DDDD”.
See A.6.1.1900 MOVE.

A.17.6.1.2212 SLITERAL
The current functionality of 6.1.2165 S" may be provided by the following definition:

S" ("ccc<quote>" --)
[CHAR] " PARSE POSTPONE SLITERAL
; IMMEDIATE

A.17.6.2.2255 SUBSTITUTE
Many applications need to be able to perform text substitution, for example:

Your balance at (time) on (date) is (currencyvalue).

Translation of a sentence or message from one language to another may result in changes to the
displayed parameter order. The example, the Afrikaans translation of this sentence requires a differ-
ent order:

Jou balans op (date) om (time) is {currencyvalue).

The words SUBSTITUTE and REPLACES provide for this requirements by defining a text substitution
facility. For example, we can provide an initial string in the form:

Your balance at %time% on %date$% is %$currencyvalue%.

The % is used as delimiters for the substitution name. The text “currencyvalue”, “date” and
“time” are text substitutions, where the replacement text is defined by REPLACES:

date S" 27/Aug/2018" ;
time S"™ 17:25" ;
date S" date" REPLACES
time S" time" REPLACES

The substitution name “date” is defined to be replaced with the string “27/Aug/2018” and “time” to
be replaced with “17:25”. Thus SUBSTITUTE would produce the string:

Your balance at 17:25 on 27/Aug/2018 is %currencyvalue$%.

As the substitution name “currencyvalue” has not been defined, it is left unchanged in the resulting
string.

The return value n is nonnegative on success and indicates the number of substitutions made. In the
above example, this would be two. A negative value indicates that an error occurred. As substitution
is not recursive, the return value could be used to provide a recursive substitution.

Implementation of SUBSTITUTE may be considered as being equivalent to a wordlist which is
searched. If the substitution name is found, the word is executed, returning a substitution string. Such
words can be deferred or multiple wordlists can be used. The implementation techniques required
are similar to those used by ENVIRONMENT?. There is no provision for changing the delimiter
character, although a system may provide system-specific extensions.

236 rationale

Forth 200x / 18.1 A. Rationale

A.18 The optional Extended-Character word set

Forth defines graphic and control characters from the ASCII character set. ASCII was originally designed
for the English language. However, most western languages fit somewhat into the Forth framework, since
a single byte is sufficient to encode all characters in each language, although different languages may use
different encodings; Latin-1 and Latin-15 are widely used. For other languages, different character sets
have to be used, several of which are variable-width. Currently, the most popular representative of the
variable-width character sets is UTF-8.

Many Forth systems today are case insensitive, to accept lower case standard words. It is sufficient to
be case insensitive for the ASCII subset to make this work — this saves a large code mapping table for
comparison of other symbols. Case is mostly an issue of European languages (Latin, Greek, and Cyrillic),
but similar issues exist between traditional and simplified Chinese (finally being dealt with by Unihan), and
between different Latin code pages in the Universal Character Set (UCS), e.g., full width vs. normal half
width Latin letters.

Furthermore, UCS allows composition of glyphs and has direct encoding for composed glyphs, which look
the same, but have different encodings. This is not a problem for a Forth system to solve.

Some encodings (not UTF-8) might give surprises when you use a case insensitive ASCII-compare that’s
8-bit safe, but not aware of the current encoding.

The xchar word set does not address problems that come from using multiple different encodings and
switching or converting between them. It is good practice for a system implementing xchar to support
UTF-8.

A.18.6 Glossary

A.18.6.2.0895 CHAR
The behavior of the extended version of CHAR is fully backward compatible with 6.1.0895 CHAR.

rationale 237

B. Bibliography Forth 200x / 18.1

Annex B
(informative)
Bibliography

Industry standards

Forth-77 Standard, Forth Users Group, FST-780314.
Forth-78 Standard, Forth International Standards Team.
Forth-79 Standard, Forth Standards Team.

Forth-83 Standard and Appendices, Forth Standards Team.

The standards referenced in this section were developed by the Forth Standards Team, a volunteer
group which included both implementors and users. This was a volunteer organization operating
under its own charter and without any formal ties to ANSI, IEEE or any similar standards body.

The following standards where developed under the auspices of ANSI. The committee drawing up
the ANSI standard included several members of the Forth Standards Team.

ANSI X3.215-1994 Information Systems — Programming Language FORTH
ISO/IEC 15145:1997 Information technology. Programming languages. FORTH

Books

Brodie, L. Thinking FORTH. Englewood Cliffs, NJ: Prentice Hall, 1984. Now available from
http://thinking-forth.sourceforge.net/

Brodie, L. Starting FORTH (2™ edition). Englewood Cliffs, NJ: Prentice Hall, 1987.

Feierbach, G. and Thomas, P. Forth Tools & Applications. Reston, VA: Reston Computer Books,
1985.

Haydon, Dr. Glen B. All About FORTH (3" edition). La Honda, CA: 1990.

Kelly, Mahlon G. and Spies, N. FORTH: A Text and Reference. Englewood Cliffs, NJ: Prentice
Hall, 1986.

Knecht, K. Introduction to Forth. Indiana: Howard Sams & Co., 1982.

Koopman, P. Stack Computers, The New Wave. Chichester, West Sussex, England: Ellis Horwood
Ltd. 1989.

Martin, Thea, editor. A Bibliography of Forth References (3 edition). Rochester, New York:
Institute of Applied Forth Research, 1987.

McCabe, C. K. Forth Fundamentals (2 volumes). Oregon: Dilithium Press, 1983.

Ouverson, Marlin, editor. Dr. Dobbs Toolbook of Forth. Redwood City, CA: M&T Press, Vol. 1,
1986; Vol. 2, 1987.

Pelc, Stephen. Programming Forth. Southampton, England: MicroProcessor Engineering Limited,
2005. http://www.mpeforth.com/arena/ProgramForth.pdf.

Pountain, R. Object Oriented Forth. London, England: Academic Press, 1987.

238

bib

http://thinking-forth.sourceforge.net/
http://www.mpeforth.com/arena/ProgramForth.pdf

Forth 200x / 18.1 B. Bibliography

Rather, Elizabeth D. Forth Application Techniques. FORTH, Inc., 2006. ISBN: 978-0966215618.

Rather, Elizabeth D. and Conklin, Edward K. Forth Programmer’s Handbook (3™ edition).
BookSurge Publishing, 2007. ISBN: 978-1419675492.

Terry, J. D. Library of Forth Routines and Utilities. New York: Shadow Lawn Press, 1986.
Tracy, M. and Anderson, A. Mastering FORTH (revised edition). New York: Brady Books, 1989.
Winfield, A. The Complete Forth. New York: Wiley Books, 1983.

Journals, magazines and newsletters

Forsley, Lawrence P., Conference Chairman. Rochester Forth Conference Proceedings. Rochester,
New York: Institute of Applied Forth Research, 1981 to present.

Forsley, Lawrence P., Editor-in-Chief. The Journal of Forth Application and Research. Rochester,
New York: Institute of Applied Forth Research, 1983 to present.

Frenger, Paul, editor. SIGForth Newsletter. New York, NY: Association for Computing Machinery,
1989 to present.

Ouverson, Marlin, editor. Forth Dimensions. San Jose, CA: The Forth Interest Group, 1978 to
present.

Reiling, Robert, editor. FORML Conference Proceedings. San Jose, CA: The Forth Interest Group,
1980 to present.

Ting, Dr. C. H., editor. More on Forth Engines. San Mateo, CA: Offete Enterprises, 1986 to
present.

Selected articles

Hayes, J.R. “Postpone” Proceedings of the 1989 Rochester Forth Conference. Rochester, New
York: Institute for Applied Forth Research, 1989.

Kelly, Guy M. “Forth”. McGraw-Hill Personal Computer Programming Encyclopedia — Lan-
guages and Operation Systems. New York: McGraw-Hill, 1985.

Kogge, P. M. “An Architectural Trail to Threaded Code Systems”. IEEE Computer (March, 1982).
Moore, C. H. “The Evolution of FORTH — An Unusual Language”. Byte (August 1980).

Rather, E. D. “Forth Programming Language”. Encyclopedia of Physical Science & Technology
(Vol. 5). New York: Academic Press, 1987.

Rather, E. D. “FORTH”. Computer Programming Management. Auerbach Publishers, Inc., 1985.

Rather, E. D.; Colburn, D. R.; Moore, C. H. “The Evolution of Forth”. ACM SIGPLAN Notices
(Vol. 28, No. 3, March 1993).

bib 239

C. Compatibility analysis Forth 200x / 18.1

Annex C
(informative)
Compatibility analysis

Before this standard, there were several industry standards for Forth. The most influential are listed here in
chronological order, along with the major differences between this standard and the most recent, Forth 94.

C.1 FIG Forth (circa 1978)

FIG Forth was a “model” implementation of the Forth language developed by the Forth Interest Group
(FIG). In FIG Forth, a relatively small number of words were implemented in processor-dependent machine
language and the rest of the words were implemented in Forth. The FIG model was placed in the public
domain, and was ported to a wide variety of computer systems. Because the bulk of the FIG Forth imple-
mentation was the same across all machines, programs written in FIG Forth enjoyed a substantial degree
of portability, even for “system-level” programs that directly manipulate the internals of the Forth system
implementation.

FIG Forth implementations were influential in increasing the number of people interested in using Forth.
Many people associate the implementation techniques embodied in the FIG Forth model with “the nature
of Forth”.

However, FIG Forth was not necessarily representative of commercial Forth implementations of the same
era. Some of the most successful commercial Forth systems used implementation techniques different from
the FIG Forth “model”.

C.2 Forth79

The Forth-79 Standard resulted from a series of meetings from 1978 to 1980, by the Forth Standards Team,
an international group of Forth users and vendors (interim versions known as Forth 77 and Forth 78 were
also released by the group).

Forth 79 described a set of words defined on a 16-bit, twos-complement, unaligned, linear byte-addressing
virtual machine. It prescribed an implementation technique known as “indirect threaded code”, and used
the ASCII character set.

The Forth-79 Standard served as the basis for several public domain and commercial implementations,
some of which are still available and supported today.

C.3 Forth 83

The Forth-83 Standard, also by the Forth Standards Team, was released in 1983. Forth 83 attempted to fix
some of the deficiencies of Forth 79.

Forth 83 was similar to Forth 79 in most respects. However, Forth 83 changed the definition of several
well-defined features of Forth 79. For example, the rounding behavior of integer division, the base value
of the operands of PICK and ROLL, the meaning of the address returned by ’, the compilation behavior
of ’, the value of a “true” flag, the meaning of NOT, and the “chaining” behavior of words defined by
VOCABULARY were all changed. Forth 83 relaxed the implementation restrictions of Forth 79 to allow

240 diff

Forth 200x / 18.1 C. Compatibility analysis

any kind of threaded code, but it did not fully allow compilation to native machine code (this was not
specifically prohibited, but rather was an indirect consequence of another provision).

Many new Forth implementations were based on the Forth-83 Standard, but few “strictly compliant™ Forth-
83 implementations exist.

Although the incompatibilities resulting from the changes between Forth 79 and Forth 83 were usually
relatively easy to fix, a number of successful Forth vendors did not convert their implementations to be
Forth 83 compliant. For example, the most successful commercial Forth for Apple Macintosh computers
is based on Forth 79.

C.4 ANS Forth (1994)

In the mid to late 1980s the computer industry underwent a rapid and profound change. The personal-
computer market matured into a business and commercial market, while the market for ROM-based embedded
control computers grew substantially. Improvements in custom processor design allowed for the develop-
ment of numerous “Forth chips,” customized for the execution of the Forth language.

In order to take full advantage of evolving technology, many Forth implementations ignored some of the
restrictions imposed by the implied “virtual machine” of previous standards. The ANS Forth committee
was formed in 1987 to address the fragmentation within the Forth community caused not only by the
difference between Forth 79 and Forth 83 but the exploitation of technical developments.

The committee undertook a comprehensive review of a variety of existing implementations, especially
those with substantial user bases and/or considerable success in the market place. This allowed them to
identify and document features common to these systems, many of which had not been included in any
previous standard. This was the most comprehensive review of Forth systems to date, taking eighty-seven
days covering twenty-three meetings over eight years. The inclusive nature of the standard allowed the
various factions within the community to unify in support of ANS Forth, with many systems providing a
compatibility layer.

The committee chose to move away from prescribing stringent requirements as previous standards had, with
the specification of a virtual machine. It preferred to describe the operation of the virtual machine, without
reference to its implementation, thus allowing an implementor to take full advantage of any technical
developments while providing the developer with a complete list of entitlements.

This required the identification of implicit assumptions made by the previous standards, making them
explicit and abstracting them into more general concepts where possible. A good example of this is the
size of an item on the stack. In previous standards this was assumed to be 16 bits wide. This was no longer
a valid assumption. ANS Forth introduced the concept of the cell, allowing an implementation to use a
stack size most suited to the environment.

The American National Standards Institution (ANSI) published the ANS Forth Standard in 1994 with the
title “ANSI X3.215-1994 Information Systems — Programming Language FORTH”. This is referenced
throughout this document as Forth 94.

C.5 ISO Forth (1997)

ANSI submitted the Forth 94 Standard to the ISO (International Organization for Standardization) and IEC
(International Electrotechnical Commission) joint committee for consideration as an international standard.

diff 241

C. Compatibility analysis Forth 200x / 18.1

The ISO/IEC adopted the Forth 94 document as an international standard in 1997, publishing it under the
title “ISO/IEC 15145:1997 Information technology. Programming languages. FORTH” .

C.6 Approach of this standard

During a workshop on the Forth standard at the EuroForth conference in 2004 it was agreed that Forth 94
required updating.

A committee was formed and agreed that the process should be as open as possible, adopting the Usenet
RfD/CfV (Request for Discussion/Call for Votes) process to produce semi-formal proposals for changes
to the standard. In addition to general discussion on the comp.lang.forth usenet news group, a
moderated mailing list (with public archive) was created for those who do not follow the news group.
Standards meetings to discuss CfVs were held in public in conjunction with the EuroForth conference.

The work of the Forth 94 committee was the basis of this standard, informally called Forth 200x. The aim
of the Forth 200x committee is to produce a rolling document, with the standard constantly being updated
based on discussion of proposals and the corresponding votes. A snapshot document is occasionally
produced, with this document being the first.

The Forth 200x committee defined a procedure for proposals. In addition to the formal text of the proposal,
they had to include: the rationale behind the change; a reference implementation, or a description of the
reason a reference implementation cannot be presented; unit testing for the proposed change, especially for
border conditions. See Proposals Process (page viii) for a full description.

C.7 Differences from Forth 94

C.7.1 Removed Obsolete Words
Forth 94 declared seven words as ‘obsolescent’, all but FORGET have been removed from this standard.

Words affected:
#TIB, CONVERT, EXPECT, QUERY, SPAN, TIB, WORD.

Reason:
Obsolescent words have been removed.

Impact:
WORD is no longer required to leave a space at the end of the returned string.

It is recommended that, should the obsolete words be included, they have the behaviour described in
Forth 94. The names should not be reused for other purposes.

Transition/Conversion:
The functions of TIB and #TIB have been superseded by SOURCE.

The function of CONVERT has been superseded by >NUMBER.
The functions of EXPECT and SPAN have been superseded by ACCEPT.

The function of QUERY may be performed with ACCEPT and EVALUATE.

242 diff

Forth 200x / 18.1 C. Compatibility analysis

C.7.2 Separate Floating-point Stack is now Standard

Previously systems could implement either a separate floating-point stack or a combined floating-point/data
stack; programs were required to cater for both (or declare an environmental dependency on a particular
variant).

Words Affected:
All floating-point words.

Reason:
The developing of software that may be used with either a combined stack or a separate stack is
extremely difficult and costly. While some of the systems surveyed provide a combined floating-
point/data stack, they all provide a separate floating-point stack.

Impact:
Forth 94 programs with an environmental dependency on a separate floating-point stack become
standard programs.

Forth 94 programs with an environmental dependency on a combined stack retain the environmental
dependency.

Forth 94 programs (without environmental dependency, i.e., those working on either kind of system)
remain standard programs.

Forth 94 systems that implement a separate floating-point stack continue to be standard systems.

Forth 94 systems that implement a combined stack become systems with an environmental restriction
of not providing a separate floating-point stack, but a combined stack.

Transition/Conversion:
Any code that has an environmental dependency on the use of a combined floating-point/data stack
should be ported to use a separate floating-point stack.

A system that has an environmental restriction on using a combined floating-point/data stack should
consider providing a separate floating-point stack.

C.7.3 Using ENVIRONMENT? to inquire whether a word set is present

With the advent of a new standard, it was necessary to review the meaning of word set queries. Compatibility
with Forth 94 demands that a word set query produce the same result as for Forth 94; i.e., querying for
CORE—-EXT returns true only if all the Forth 94 CORE EXT words are present. The question was how to
distinguish between word sets described by this and subsequent standards.

The committee considered adding a year indicator to the word set name (“CORE-EXT-2012") or a
providing a general query (“Forth-2012") which could be combined with the word-set query. As the
committee could find very few examples of the word-set queries being used, it chose not to update the word
set-query mechanism, but rather to mark it as obsolescent.

Words Affected:
ENVIRONMENT?

diff 243

C. Compatibility analysis Forth 200x / 18.1

Reason:
The use of the word-set query to inquire whether a word set is present in the system has been marked
obsolescent. If present the query indicates the word set, as documented in Forth 94, is available.

Impact:
Forth 94 did not guarantee the presence of these queries. Many systems that provided all the words
in a particular word set did not provide the corresponding query. Portable programs are not affected
as they could not rely on this function.

Transition/Conversion:
There is no direct equivalent to determine the presence of a whole word set. The 15.6.2.2530.30
[DEFINED] and 15.6.2.2534 [UNDEFINED] words can be used to detect the availability (or
otherwise) of individual words.

C.7.4 Additional TO targets
6.2.2295 TO has been extended to act on targets defined with 12.6.2.1628 FVALUE and 8.6.2.0435 2VALUE.

Words affected:
TO

C.7.5 Input/Output return values

Words affected:
All words that return an ior.

Reason:
Forth 94 left the error code (ior) implementation-defined, although it did recommend an ior to be a
THROW code. Forth 2012 now requires an ior to be a THROW code.

Transition/Conversion:
Forth 94 programs are not affected. Programs that are dependent on iors being throwable are no
longer required to document the dependency.

Forth 94 systems that abided by the recommendation are not affected. Systems that did not heed
this advice are required to do so. A number of THROW codes were added to table 9.1 to ease this
transition.

C.7.6 Minimum number of locals

Words affected:
(LOCAL), LOCALS |

Reason:
Some programs require more than eight locals.

Transition/Conversion:
Existing programs are unaffected. Systems implementing the locals word set have to be changed to
support at least 16 (previously 8) locals.

244 diff

Forth 200x / 18.1 C. Compatibility analysis

C.7.7 Number prefixes

Decimal, hexadecimal, binary number literals can now be written irrespective of BASE by using the prefix
#,$, %. Also, character literals can be written as ’c’.

Standard programs are unaffected. Systems have to be changed to recognize these forms.

See 3.4.1.3 Text interpreter input number conversion.

C.7.8 SOURCE-ID Clarification

When interpreting text from a file, the relationship between the position in the file returned by SOURCE-1ID,
and the current interpretation position is undefined.

C.7.9 FASINH

An ambiguous condition on r/ being less than 0 was removed.

Existing programs are not affected. Existing systems are unlikely to be affected.

C.7.10 FATAN2

Words affected:
FATAN2

Reason:
The result is now specified more tightly: it is the principal angle (between -pi and pi).

Impact:
Forth 94 compliant programs are not affected.

Transition/Conversion:
Systems may have to change FATAN2 to return the principal angle.

C.8 Additional words

The following words have been added to the standard:

C.8.6 Core word sets

The following words have been added to 6.2 Core extension words:

6.2.0698 ACTION-OF 6.2.1175 DEFER! 6.2.1725 Is
6.2.0825 BUFFER: 6.2.1177 DEFER@ 6.2.2020 PARSE-NAME
6.2.1173 DEFER 6.2.1675 HOLDS 6.2.2266 s\ "

C.8.8 Double-Number word sets
The following words have been added to 8.6.2 Double-Number extension words:

8.6.2.0435 2VALUE

diff 245

C. Compatibility analysis Forth 200x / 18.1

C.8.10 Facility word sets

The following words have been added to 10.6.2 Facility extension words:

10.6.2.0135 +FIELD 10.6.2.1740.06 K-F'1 10.6.2.1740.17 K-F9
10.6.2.0763 BEGIN-STRUCTURE 10.6.2.1740.07 K-F10 10.6.2.1740.18 K—HOME
10.6.2.0893 CFIELD: 10.6.2.1740.08 K-F11 10.6.2.1740.19 K-INSERT
10.6.2.1306.40 EKEY>FKEY 10.6.2.1740.09 K-F12 10.6.2.1740.20 K-LEFT
10.6.2.1336 END-STRUCTURE 10.6.2.1740.10 K-F2 10.6.2.1740.21 K—-NEXT
10.6.2.1518 FIELD: 10.6.2.1740.11 K-F3 10.6.2.1740.22 K-PRIOR
10.6.2.1740.01 K-ALT-MASK 10.6.2.1740.12 K-F4 10.6.2.1740.23 K-RIGHT
10.6.2.1740.02 K-CTRL-MASK 10.6.2.1740.13 K-F5 10.6.2.1740.24 K-SHIFT-MASK
10.6.2.1740.03 K-DELETE 10.6.2.1740.14 K-F6 10.6.2.1740.25 K-UP
10.6.2.1740.04 K—-DOWN 10.6.2.1740.15 K-F7

10.6.2.1740.05 K—END 10.6.2.1740.16 K-F8

C.8.11 File-Access word sets

The following words have been added to 11.6.2 File-Access extension words:

11.6.2.1714 INCLUDE 11.6.2.2144.10 REQUIRE 11.6.2.2144.50 REQUIRED

C.8.12 Floating-Point word sets

The following words have been added to 12.6.2 Floating-Point extension words:

12.6.2.1207.40 DEFFIELD: 12.6.2.1627 E TRUNC 12.6.2.2175 s>F
12.6.2.1471 >3 12.6.2.1628 FVALUE 12.6.2.2206.40 SFFIELD:
12.6.2.1517 FFIELD:

C.8.13 Locals word sets

The following words have been added to 13.6.2 Locals extension words:

13.6.2.2550 { :

C.8.15 Programming-Tools word sets

The following words have been added to the 15.6.2 Programming-Tools extension words:

15.6.2.1908 N>R 15.6.2.2264 SYNONYM
15.6.2.1909.10 NAME>COMP ILE 15.6.2.2297 TRAVERSE-WORDLIST
15.6.2.1909.20 NAME>INTERPRET 15.6.2.2530.30 [DEFINED]
15.6.2.1909.40 NAME>STRING 15.6.2.2534 [UNDEFINED]

15.6.2.1940 NR>
C.8.17 String word sets

The following words have been added to the 17.6.2 String extension words:

17.6.2.2141 REPLACES 17.6.2.2255 SUBSTITUTE 17.6.2.2375 UNESCAPE

246 diff

Forth 200x / 18.1 C. Compatibility analysis

C.8.18 Extended-Character word sets
The Extended Character word set was introduced by Forth-2012.

The following words make up 18 The optional Extended-Character word set:

18.6.1.2486.50 X—-SIZE 18.6.1.2487.25 XC-SIZE 18.6.1.2488.30 XKEY

18.6.1.2487.10 xXC ' + 18.6.1.2487.35 XC@+ 18.6.1.2488.35 XKEY?
18.6.1.2487.15 XC ! +? 18.6.1.2487.40 XCHAR+ 18.6.2.0145 +X/STRING
18.6.1.2487.20 xC, 18.6.1.2488.10 XEMIT 18.6.2.0175 -TRAILING-GARBAGE
The following words make up 18.6.2 Extended-Character extension words:

18.6.2.0895 CHAR 18.6.2.2486.70 X-WIDTH 18.6.2.2488.20 XHOLD
18.6.2.1306.60 EKEY>XCHAR 18.6.2.2487.30 XC-WIDTH 18.6.2.2495 X\ STRING—
18.6.2.2008 PARSE 18.6.2.2487.45 XCHAR— 18.6.2.2520 [CHAR]

diff 247

D. Portability guide Forth 200x / 18.1

Annex D
(informative)
Portability guide

D.1 Introduction

A primary goal of Forth 94 was to enable a programmer to write Forth programs that work on a wide variety
of machines, Forth-2012 continues this practice. This goal is accomplished by allowing some key Forth
terms to be implementation defined (e.g., cell size) and by providing Forth operators (words) that conceal
the implementation. This allows the implementor to produce the Forth system that most effectively uses the
native hardware. The machine independent operators, together with some programmer discipline, support
program portability.

It can be difficult for someone familiar with only one machine architecture to imagine the problems
caused by transporting programs between dissimilar machines. This Annex provides guidelines for writing
portable Forth programs. The first section describes ways to make a program hardware independent.

The second section describes assumptions about Forth implementations that many programmers make, but
can’t be relied upon in a portable program.

D.2 Hardware peculiarities

D.2.1 Data/memory abstraction

This standard gives definitions for data and memory that apply to a wide variety of computers. These
definitions give us a way to talk about the common elements of data and memory while ignoring the details
of specific hardware. Similarly, Forth programs that use data and memory in ways that conform to these
definitions can also ignore hardware details. The following sections discuss the definitions and describe
how to write programs that are independent of the data and memory peculiarities of different computers.

D.2.2 Definitions

Three terms defined by this standard are address unit, cell, and character.

The address space of a Forth system is divided into an array of address units; an address unit is the smallest
collection of bits that can be addressed. In other words, an address unit is the number of bits spanned by
the addresses addr and addr+1. The most prevalent machines use 8-bit address units, but other address unit
sizes exist.

In this standard, the size of a cell is an implementation-defined number of address units. Forth implemented
on a 16-bit microprocessor could use a 16-bit cell and an implementation on a 32-bit machine could
use a 32-bit cell. Less common cell sizes (e.g., 18-bit or 36-bit machines, etc.) could implement Forth
systems with their native cell sizes. In all of these systems, Forth words such as DUP and ! do the same
things (duplicate the top cell on the stack and store the second cell into the address given by the first cell,
respectively).

Similarly, the definition of a character has been generalized to be an implementation-defined number of
address units (but at least eight bits). This removes the need for a Forth implementor to provide 8-bit
characters on processors where it is inappropriate. For example, on an 18-bit machine with a 9-bit address

248 port

Forth 200x / 18.1 D. Portability guide

unit, a 9-bit character would be most convenient. Since, by definition, you can’t address anything smaller
than an address unit, a character must be at least as big as an address unit. This will result in big characters
on machines with large address units. An example is a 16-bit cell addressed machine where a 16-bit
character makes the most sense.

D.2.3 Addressing memory

One of the most common portability problems is the addressing of successive cells in memory. Given the
memory address of a cell, how do you find the address of the next cell? On a byte-addressed machine
with 32-bit cells the code to find the next cell would be 4 +. The code would be 1+ on a cell-addressed
processor and 16 + on a bit-addressed processor with 16-bit cells. This standard provides a next-cell
operator named CELL+ that can be used in all of these cases. Given an address, CELL+ adjusts the address
by the size of a cell (measured in address units).

A related problem is that of addressing an array of cells in an arbitrary order. This standard provides a
portable scaling operator named CELLS. Given a number n, CELLS returns the number of address units
needed to hold n cells. Using CELLS, we can make a portable definition of an ARRAY defining word:

ARRAY (u —--) CREATE CELLS ALLOT
DOES> (u —- addr) SWAP CELLS + ;

There are also portability problems with addressing arrays of characters. In a byte-addressed machine, the
size of a character equals the size of an address unit. Addresses of successive characters in memory can
be found using 1+ and scaling indices into a character array is a no-op (i.e., 1). However, there could
be implementations where a character is larger than an address unit. The CHAR+ and CHARS operators,
analogous to CELL+ and CELLS are available to allow maximum portability.

This standard generalizes the definition of some Forth words that operate on regions of memory to use
address units. One example is ALLOT. By prefixing ALLOT with the appropriate scaling operator (CELLS,
CHARS, etc.), space for any desired data structure can be allocated (see definition of array above). For
example:

CREATE ABUFFER 5 CHARS ALLOT (allot5 character buffer)

D.2.4 Alignment problems

Some processors have restrictions on the addresses that can be used by memory access instructions. This
standard does not require an implementor of a Forth to make alignment transparent; on the contrary, it
requires (in Section 3.3.3.1 Address alignment) that a standard Forth program assume that character and
cell alignment may be required. One pitfall caused by alignment restrictions is in creating tables containing
both characters and cells. When , (comma) or C, is used to initialize a table, data are stored at the data-
space pointer. Consequently, it must be suitably aligned. For example, a non-portable table definition
would be:

CREATE ATABLE 1 C, X , 2 C, Y,

On a machine that restricts memory fetches to aligned addresses, CREATE would leave the data space
pointer at an aligned address. However, the first C, would leave the data space pointer at an unaligned
address, and the subsequent , (comma) would violate the alignment restriction by storing X at an unaligned
address. A portable way to create the table is:

port 249

D. Portability guide Forth 200x / 18.1

CREATE ATABLE 1 C, ALIGN X , 2 C, ALIGN Y ,

ALIGN adjusts the data space pointer to the first aligned address greater than or equal to its current address.
An aligned address is suitable for storing or fetching characters, cells, cell pairs, or double-cell numbers.
After initializing the table, we would also like to read values from the table. For example, assume we
want to fetch the first cell, X, from the table. ATABLE CHAR+ gives the address of the first thing after the
character. However this may not be the address of X since we aligned the dictionary pointer between the
C, and the ,. The portable way to get the address of X is:

ATABLE CHAR+ ALIGNED
ALIGNED adjusts the address on top of the stack to the first aligned address greater than or equal to its

current value.

D.3 Number representation

D.3.1 Big endian vs. little endian

The constituent bits of a number in memory are kept in different orders on different machines. Some
machines place the most-significant part of a number at an address in memory with less-significant parts
following it at higher addresses; this is known as big-endian ording. Other machines do the opposite; the
least-significant part is stored at the lowest address (little-endian ordering).

For example, the following code for a 16-bit little endian Forth would produce the answer 1:
VARIABLE FOO 1 FOO ! FOO CQ@

The same code on a 16-bit big-endian Forth would produce the answer 0. A portable program cannot
exploit the representation of a number in memory.

A related issue is the representation of cell pairs and double-cell numbers in memory. When a cell pair
is moved from the stack to memory with 2!, the cell that was on top of the stack is placed at the lower
memory address. It is useful and reasonable to manipulate the individual cells when they are in memory.

Editor:
This would be a good place to add a discussion of characters and the extended character word set.

D.4 Forth system implementation

During Forth’s history, an amazing variety of implementation techniques have been developed. The ANS
Forth Standard encourages this diversity and consequently restricts the assumptions a user can make about
the underlying implementation of an ANS Forth system. Users of a particular Forth implementation
frequently become accustomed to aspects of the implementation and assume they are common to all Forths.
This section points out many of these incorrect assumptions.

D.4.1 Definitions

Traditionally, Forth definitions have consisted of the name of the Forth word, a dictionary search link, data
describing how to execute the definition, and parameters describing the definition itself. These components
have historically been referred to as the name, link, code, and parameter fields. No method for accessing
these fields has been found that works across all of the Forth implementations currently in use. Therefore,

250 port

Forth 200x / 18.1 D. Portability guide

a portable Forth program may not use the name, link, or code field in any way. Use of the parameter field
(renamed to data field for clarity) is limited to the operations described below.

Only words defined with CREATE or with other defining words that call CREATE have data fields. The
other defining words in the standard (VARIABLE, CONSTANT, :, etc.) might not be implemented with
CREATE. Consequently, a Standard Program must assume that words defined by VARIABLE, CONSTANT,
:, etc., may have no data fields. There is no portable way for a Standard Program to modify the value of a
constant or to “patch” a colon definition at run time. The DOES> part of a defining word operates on a data
field, so DOES> may only be used on words ultimately defined by CREATE.

In standard Forth, FIND, [’] and ’ (tick) return an unspecified entity called an execution token. There
are only a few things that may be done with an execution token. The token may be passed to EXECUTE
to execute the word ticked or compiled into the current definition with COMPILE, . The token can also
be stored in a variable or other data structure and used later. Finally, if the word ticked was defined via
CREATE, >BODY converts the execution token into the word’s data-field address.

An execution token cannot be assumed to be an address and may not be used as one.

D.4.2 Stacks

In some Forth implementations, it is possible to find the address of a stack in memory and manipulate the
stack as an array of cells. This technique is not portable. On some systems, especially Forth-in-hardware
systems, the stacks might be in memory that can’t be addressed by the program or might not be in memory
at all. Forth’s parameter and return stacks must be treated as stacks.

A Standard Program may use the return stack directly only for temporarily storing values. Every value
examined or removed from the return stack using R@, R>, or 2R> must have been put on the stack explicitly
using >R or 2>R. Even this must be done carefully because the system may use the return stack to hold
return addresses and loop-control parameters. Section 3.2.3.3 Return stack of the standard has a list of
restrictions.

D.5 Summary

The Forth Standard does not force anyone to write a portable program. In situations where performance
is paramount, the programmer is encouraged to use every trick available. On the other hand, if portability
to a wide variety of systems is needed(or anticipated), this standard provides the tools to accomplish this.
There might be no such thing as a completely portable program. A programmer, using this guide, should
intelligently weigh the tradeoffs of providing portability to specific machines. For example, machines that
use sign-magnitude numbers are rare and probably don’t deserve much thought. But, systems with different
cell sizes will certainly be encountered and should be provided for. In general, making a program portable
clarifies both the programmer’s thinking process and the final program.

port 251

E. Reference Implementations Forth 200x / 18.1

Annex E
(informative)
Reference Implementations

E.1 Introduction

In the most recent review of this document, proposals were encouraged to include a reference implement-
ation where possible. Where an implementation requires system specific knowledge it was documented.

This appendix contains the reference implementations that have been accepted by the committee. This is
not a complete reference implementation nor do the committee recommend these implementations. They
are supplied solely for the purpose of providing a detailed understanding of a definitions requirement.
System implementors are free to implement any operation in a manner that suits their system, but it must
exhibit the same behavior as the reference implementation given here.

E.6 The Core word set

E.6.1.1910 NEGATE
(n1 —— n2)
NEGATE INVERT 1+

E.6.1.2050 QUIT

QUIT
(empty the return stack and set the input source to the user input device)
POSTPONE [

REFILL
WHILE

[’] INTERPRET CATCH

CASE

0 OF STATE @ O= IF ." OK" THEN CR ENDOF

-1 OF (Aborted) ENDOF

-2 OF (display message from ABORT") ENDOF

(default) DUP ." Exception # "

ENDCASE
REPEAT BYE

7
This assumes the existence of a system-implementation word INTERPRET that embodies the text

interpreter semantics described in 3.4 The Forth text interpreter. Further discussion of the interpret
loop can be found in A.6.2.0945 COMPILE, .

E.6.2.0698 ACTION-OF
: ACTION-OF
STATE Q@ IF
POSTPONE [’] POSTPONE DEFER(@
ELSE

252 implement

Forth 200x / 18.1 E. Reference Implementations

' DEFERQ
THEN ; IMMEDIATE

E.6.2.0825 BUFFER:
This implementation depends on children of CREATE returning an aligned address. Other memory
location techniques require implementation-specific knowledge of the underlying Forth system.

BUFFER: \ u "<name>" -- ; —- addr

\ Create a buffer of u address units whose address is returned at run time.
CREATE ALLOT

7

E.6.2.1173 DEFER

DEFER ("name" --)
CREATE [’] ABORT ,

DOES> (... — ...)
@ EXECUTE ;

E.6.2.1175 DEFER!
DEFER! (xt2 xtl —--)
>BODY ! ;

E.6.2.1177 DEFERQ
DEFER@ (xtl —-- xt2)
>BODY @ ;

E.6.2.1675 HOLDS

HOLDS (addr u ——)
BEGIN DUP WHILE 1- 2DUP + C@ HOLD REPEAT 2DROP ;

E.6.2.1725 1s
Is
STATE @ IF
POSTPONE [’] POSTPONE DEFER!
ELSE
' DEFER!
THEN ; IMMEDIATE

E.6.2.2020 PARSE-NAME

isspace? (c — £)
BL 1+ U< ;
isnotspace? (c — £f)

isspace? 0= ;

xt-skip (addrl nl xt -- addr2 n2)
\ skip all characters satisfying xt (¢ -— £)
>R
BEGIN
DUP

implement 253

E. Reference Implementations Forth 200x / 18.1

WHILE
OVER CQR R@ EXECUTE
WHILE
1 /STRING
REPEAT THEN
R> DROP ;

parse-name ("name" -- c-addr u)

SOURCE >IN @ /STRING

["] isspace? xt-skip OVER >R

["] isnotspace? xt-skip (end-word restlen r: start-word)
2DUP 1 MIN + SOURCE DROP - >IN !

DROP R> TUCK - ;

E.6.2.2440 WITHIN

WITHIN (test low high -- flag)
OVER - >R - R> U<

E.8 The optional Double-Number word set

E.S8.6.1.1140 D>s

D>S (d —— n)
DROP

E.8.6.2.0435 2VALUE

The implementation of TO to include 2VALUES requires detailed knowledge of the host implement-
ation of VALUE and TO, which is the main reason why 2VALUE should be standardized. The order
in which the two cells are stored in memory is not specified in the definition for 2VALUE but this
reference implementation has to assume one ordering — this is not intended to be definitive.

2VALUE (x1 x2 —--)
CREATE , ,
DOES> 2@ (—-- x1 x2)

4

The corresponding implementation of TO disregards the issue that TO must also work for integer
VALUEs and locals.

TO (x1 x2 "<spaces>name" --)
" >BODY
STATE Q@ IF

POSTPONE 2LITERAL POSTPONE 2!
ELSE

2!

254

implement

Forth 200x / 18.1 E. Reference Implementations

THEN
; IMMEDIATE

E.9 The optional Exception word set

E.9.6.1.0875 CATCH
This sample implementation of CATCH uses the non-standard words described below. They or their
equivalents are available in many systems. Other implementation strategies, including directly saving
the value of DEPTH, are possible if such words are not available.

SPQ@ (—— addr)
returns the address corresponding to the top of data stack.

SP! (addr—-)
sets the stack pointer to addr, thus restoring the stack depth to the same depth that existed just

before addr was acquired by executing SP@.

RPQ (—— addr)
returns the address corresponding to the top of return stack.

RP! (addr—-)
sets the return stack pointer to addr, thus restoring the return stack depth to the same depth that
existed just before addr was acquired by executing RP Q.

VARIABLE HANDLER 0 HANDLER ! \ last exception handler

CATCH (xt —— exception# | 0 \ return addr on stack
SP@ >R (xt) \ save data stack pointer
HANDLER @ >R (xt) \ and previous handler

RP@ HANDLER ! (xt) \ set current handler
EXECUTE () \ execute returns if no THROW
R> HANDLER ! () \ restore previous handler

R> DROP () \ discard saved stack ptr

0 (0) \ normal completion

’
In a multi-tasking system, the HANDLER variable should be in the per-task variable area (i.e., a user
variable).

This sample implementation does not explicitly handle the case in which CATCH has never been
called (i.e., the ABORT behavior). One solution would be to execute a CATCH within QUIT, so that
there is always an “exception handler of last resort” present, as shown in E.6.1.2050 QUTT.

E.9.6.1.2275 THROW
This is the counter part to E.9.6.1.0875 CATCH.

THROW (??? exception# -—- ??? exception#)

?DUP IF (exc#) \ 0 THROW is no-op
HANDLER @ RP!(exc#) \ restore prev return stack
R> HANDLER ! (exc#) \ restore prev handler

R> SWAP >R (saved-sp) \ exc# onreturn stack

implement 255

E. Reference Implementations Forth 200x / 18.1

SP! DROP R> (exc#) \ restore stack
\ Return to the caller of CATCH because return
\ stack is restored to the state that existed
\ when CATCH began execution
THEN

E.9.6.2.0670 ABORT
: ABORT -1 THROW ;

E.10 The optional Facility word set

E.10.6.2.0135 +FIELD
Create a new field within a structure definition of size n bytes.

+FIELD \ n <"name"> -- ; Exec: addr -- ’addr
CREATE OVER , +
DOES> @ +

E.10.6.2.0763 BEGIN-STRUCTURE

Begin definition of a new structure. Use in the form BEGIN-STRUCTURE (name). At run time
(name) returns the size of the structure.

: BEGIN-STRUCTURE \ —-- addr 0 ; —- size
CREATE
HERE 0 0 , \ mark stack, lay dummy
DOES> (@ \ ——- rec-len

E.10.6.2.1306.40 EKEY>FKEY
The implementation is closely tied to the implementation of EKEY and therefore unportable.

E.10.6.2.1336 END-STRUCTURE
Terminate definition of a structure.

: END-STRUCTURE \ addr n —--
SWAP ! ; \ set len

E.11 The optional File-Access word set

E.11.6.2.1714 INCLUDE
INCLUDE (i*x "name" —-- Jj*x)
PARSE-NAME INCLUDED ;
E.11.6.2.2144.10 REQUIRE

: REQUIRE (ixx "name" -- ixx)
PARSE-NAME REQUIRED ;

256 implement

Forth 200x / 18.1 E. Reference Implementations

E.11.6.2.2144.50 REQUIRED
This implementation does not implement the requirements with regard to MARKER and FORGET
(REQUIRED only includes each file once, whether a marker was executed or not), so it is not a
correct implementation on systems that support these words. It extends the definition of INCLUDED
to record the name of files which have been either included or required previously. The names are
recorded in a linked list held in the included-names variable.

save-mem (addrl u -- addr2 u) \ gforth
\ copy a memory block into a newly allocated region in the heap
SWAP >R

DUP ALLOCATE THROW
SWAP 2DUP R> ROT ROT MOVE ;

name-add (addr u listp -—-)

>R save-mem (addrl u)

3 CELLS ALLOCATE THROW \ allocate list node
RQ@ @ OVER ! \ setnext pointer

DUP R> ! \ store current node in list var
CELL+ 2! ;
: name-present? (addr u list -- £)
ROT ROT 2>R BEGIN (list R: addr u)
DUP
WHILE

DUP CELL+ 2@ 2R@ COMPARE 0= IF
DROP 2R> 2DROP TRUE EXIT
THEN
@
REPEAT
(DROP 0) 2R> 2DROP ;

name—join (addr u list --)
>R 2DUP R@ @ name-present? IF
R> DROP 2DROP
ELSE
R> name-add
THEN ;

VARIABLE included-names 0 included-names !

included (i*x addr u ——- Jj*x)

2DUP included-names name-join

INCLUDED ;

REQUIRED (ix*x addr u —— ixx)

2DUP included-names @ name-present? 0= IF
included

ELSE

257

implement

E. Reference Implementations Forth 200x / 18.1

2DROP
THEN ;

E.12 The optional Floating-Point word set

E.12.6.2.1471 F>S
: F>S (r — n)
F>D D>S
E.12.6.2.1627 FTRUNC
: FTRUNC (rl —-- r2)
FDUP FO= 0=
IF FDUP FO<
IF FNEGATE FLOOR FNEGATE
ELSE FLOOR
THEN
THEN ;

E.12.6.2.1628 FVALUE
The implementation of FVALUE requires detailed knowledge of the host implementation of VALUE

and TO.
VARIABLE %var
: TO 1 Svar !
: FVALUE (F: r ——) ("<spaces>name" --)
CREATE F,
DOES> %var @ IF F! ELSE F@ THEN
0 %var ! ;

: VALUE (x "<spaces>name" —-—)
CREATE ,
DOES> $var @ IF ! ELSE (@ THEN

Svar ! ;

E.12.6.2.2175 S>F
S>F (n —— r)
S>D D>F

E.13 The optional Locals word set
E.13.6.2.1795 LOCALS|

LOCALS| ("name...name |" ——)
BEGIN
BL WORD COUNT OVER CQ@
[CHAR] | — OVER 1 — OR WHILE
(LOCAL)

258 implement

Forth 200x / 18.1

E. Reference Implementations

REPEAT 2DROP
; IMMEDIATE

0 0 (LOCAL)

E.13.6.2.2550 {:
12345 CONSTANT undefined-value

match-or-end?
2 PICK 0= >R COMPARE 0= R> OR ;

scan—args

\ 0 c-addrl ul -- c-addrl ul
BEGIN
2DUP S" |" match-or-end? 0=
2DUP S" —-" match-or-end? 0=
2DUP S" :}" match-or-end? 0=

ROT 1+ PARSE-NAME
AGAIN THEN THEN THEN ;

scan—locals
\ n c-addrl ul -- c-addrl ul

(c—addrl ul c-addr2 u2

__f>

c—addrn un n c-addrn+l un+1l
WHILE

WHILE
WHILE

c—addrn un n c-—addrn+l un+1

2DUP S" |" COMPARE 0= 0= IF
EXIT
THEN
2DROP PARSE-NAME
BEGIN
2DUP S" —-" match-or-end? 0= WHILE
2DUP S" :}" match-or-end? 0= WHILE
ROT 1+ PARSE-NAME
POSTPONE undefined-value
AGAIN THEN THEN ;
scan-end (c—-addrl ul -- c-addr2 u2)
BEGIN
2DUP S" :}" match-or-end? 0= WHILE
2DROP PARSE-NAME
REPEAT ;

define-locals (c—addrl ul
0 ?DO
(LOCAL)
LOOP
0 0 (LocaL) ;

(= (-
0 PARSE-NAME
scan—args scan-locals scan-end
2DROP define-locals
; IMMEDIATE

c—addrn un

n --)

implement

259

x:quotations

E. Reference Implementations Forth 200x / 18.1

E.15 The optional Programming-Tools word set

E.15.6.2— ;1
See E.15.6.2.0 [:.

E.15.6.2.1908 N>R
This implementation depends on the return address being on the return stack.

: N>R\ xn .. x1 N -—-; R: —— x1 .. xXnn
\ Transfer N items and count to the return stack.
DUP \ xn .. x1 NN —-
BEGIN
DUP
WHILE
ROT R> SWAP >R >R \ xn .. NN —-——- ; R: .. x1 —--
1- \ xn .. N'N —-—; R: .. x1 —
REPEAT
DROP \ N — ; R: x1 .. =xn ——

R> SWAP >R >R
E.15.6.2.1940 NR>
This implementation depends on the return address being on the return stack.

NR> \ —— xn .. x1 N ; R: x1 .. xn N —-—
\ Pull N items and count off the return stack.
R> R> SWAP >R DUP
BEGIN
DUP
WHILE
R> R> SWAP >R —-ROT
1-
REPEAT
DROP
7
E.15.6.2.2264 SYNONYM
The implementation of SYNONYM requires detailed knowledge of the host implementation, which is
one reason why it should be standardized. The implementation below is imperfect and specific to
VEFX Forth, in particular HIDE, REVEAL and IMMEDIATE? are non-standard words.

SYNONYM \ "newname" "oldname" --
\ Create a new definition which redirects to an existing one.
CREATE IMMEDIATE
HIDE ' , REVEAL
DOES>
@ STATE @ 0= OVER IMMEDIATE? OR
IF EXECUTE ELSE COMPILE, THEN

implement

260

Forth 200x / 18.1 E. Reference Implementations

E.15.6.2._ [M x:quotations

It in not possible to define quotations in ISO Forth. The following is an outline definition where
save-definition-state and restore-definition-state require carnal knowledge
of the system and are left to the implementor.

[: (C: —— guotation-sys colon-sys)
POSTPONE AHEAD save-definition-state :NONAME
; IMMEDIATE
;1 (C: quotation-sys colon-sys --) (—— xt)

POSTPONE ; >R restore—-definition-state
POSTPONE THEN R> POSTPONE LITERAL
; IMMEDIATE

E.15.6.2.2530.30 [DEFINED]
[DEFINED] BL WORD FIND NIP 0<> ; IMMEDIATE

E.15.6.2.2531 [ELSE]

[ELSE] (——)
1 BEGIN \ level
BEGIN BL WORD COUNT DUP WHILE \ level adr len
2DUP S" [IF]" COMPARE 0= IF \ level adr len
2DROP 1+ \ level’
ELSE \ level adr len
2DUP S" [ELSE]" COMPARE 0= IF \ level adr len
2DROP 1- DUP IF 1+ THEN \ level’
ELSE \ level adr len
S" [THEN]" COMPARE 0= IF \ level
1- \ level’
THEN
THEN
THEN ?DUP 0= IF EXIT THEN \ level’
REPEAT 2DROP \ level
REFILL O= UNTIL \ level
DROP
; IMMEDIATE
E.15.6.2.2532 [IF]
[IF] (flag ——)
0= IF POSTPONE [ELSE] THEN
; IMMEDIATE
E.15.6.2.2533 [THEN]
[THEN] (--) ; IMMEDIATE
E.15.6.2.2534 [UNDEFINED]
[UNDEFINED] BL WORD FIND NIP O= ; IMMEDIATE

implement 261

E. Reference Implementations Forth 200x / 18.1

E.16 The optional Search-Order word set

E.16.6.1.1180 DEFINITIONS
discard (x1 ... xn u —-—) \ Dropu+l stack items
0 ?DO DROP LOOP

DEFINITIONS (——)
GET-ORDER SWAP SET-CURRENT discard

E.16.6.1.1550 FIND
Assuming #order and context are defined as per E.16.6.1.1647 GET-ORDER.

FIND (c—-addr —— c—-addr 0 | xt 1 | xt -1)
0 (c—addr 0)
#order @ 0 ?DO
OVER COUNT c-addr 0 c-addr’ u)

c-addr 0 c-addr’ u wid)
c-addr 0; O | w1 | g -1)

I CELLS context + @
SEARCH-WORDLIST

AN AN AN AN AN~ ~

?DUP IF c-addr 0; w 1 | w =1)
2SWAP 2DROP LEAVE wil | w-=1)
THEN c-addr 0)
LOOP c-addr 0 | w1 | w =1)

E.16.6.1.1647 GET-ORDER
Here is a very simple search order implementation:

VARIABLE #order
CREATE context 16 (wordlists) CELLS ALLOT

GET-ORDER (-- widl ... widn n)
#forder @ 0 ?DO
forder @ I - 1- CELLS context + @
LOOP
#order @
E.16.6.1.2197 SET-ORDER
This is the complement of E.16.6.1.1647 GET-ORDER.

SET-ORDER (widl ... widn n -0)
DUP -1 = IF
DROP (push system default word lists and n)

THEN
DUP #order !
0 ?DO I CELLS context + ! LOOP

262 implement

Forth 200x / 18.1 E. Reference Implementations

E.16.6.2.0715 ALSO
ALSO (——)
GET-ORDER OVER SWAP 1+ SET-ORDER
E.16.6.2.1590 FORTH
(wordlist) (wid "<name>" -- ;)
CREATE ,
DOES>
@ >R
GET-ORDER NIP
R> SWAP SET-ORDER
FORTH-WORDLIST (wordlist) FORTH

E.16.6.2.1965 ONLY
ONLY (——) -1 SET-ORDER ;

E.16.6.2.2037 PREVIOUS
PREVIOUS (—--) GET-ORDER NIP 1- SET-ORDER ;

E.17 The optional String word set

E.17.6.2.2141 REPLACES
DECIMAL

[UNDEFINED] place [IF]
place \ c-addrl u c-addr2 --
\ Copy the string described by c-addr; u as a counted
\ string at the memory address described by c-addr;.
2DUP 2>R
1 CHARS + SWAP MOVE
2R> C!

[T,HEN 1

" /COUNTED-STRING" S" /COUNTED-STRING"
"/COUNTED-STRING" ENVIRONMENT? 0= [IF] 256 [THEN]
CHARS CONSTANT string-max

WORDLIST CONSTANT wid-subst
\ Wordlist ID of the wordlist used to hold substitution names and replacement text.

[DEFINED] VEXforth [IF] \ VFX Forth
makeSubst \ c-addr len -- c-addr
\ Given a name string create a substution and storage space.
\ Return the address of the buffer for the substitution text.
\ This word requires system specific knowledge of the host Forth.

implement 263

E. Reference Implementations Forth 200x / 18.1

\ Some systems may need to perform case conversion here.

GET-CURRENT >R wid-subst SET-CURRENT
(Screate) \ like CREATE but takes c-addr/len

R> SET-CURRENT
HERE string-max ALLOT 0 OVER C! \ create buffer space

4

[THEN]
[DEFINED] (WID-CREATE) [IF] \ SwiftForth

makeSubst \ c—-addr len —- c-addr

wid-subst (WID-CREATE) \ like CREATE but takes c-addr/len/wid

LAST @ >CREATE !
HERE string-max ALLOT 0 OVER C! \ create buffer space

4
[THEN]
findSubst \ c-addr len -- xt flag | 0
\ Given a name string, find the substitution.
\ Return xt and flag if found, or just zero if not found.
\ Some systems may need to perform case conversion here.
wid-subst SEARCH-WORDLIST

REPLACES \ text tlen name nlen ——
\ Define the string text/tlen as the text to substitute for the substitution named name/nlen.

\ If the substitution does not exist it is created.

2DUP findSubst IF
NIP NIP EXECUTE |\ get buffer address

ELSE
makeSubst

THEN
place \ copy as counted string

E.17.6.2.2255 SUBSTITUTE
Assuming E.17.6.2.2141 REPLACES has been defined.

[UNDEFINED] bounds [IF]
bounds \ addr len —-- addr+len addr

OVER + SWAP

l4

[THEN]
[UNDEFINED] -rot [IF]
-rot \abc-—-—cab
ROT ROT
7
[THEN]

implement

264

Forth 200x / 18.1 E. Reference Implementations

CHAR % CONSTANT delim \ Character used as the substitution name delimiter.
string-max BUFFER: Name \ Holds substitution name as a counted string.
VARIABLE DestLen \ Maximum length of the destination buffer.
2VARIABLE Dest \ Holds destination string current length and address.
VARIABLE SubstErr \ Holds zero or an error code.

addDest \ char —-
\ Add the character to the destination string.
Dest @ Destlen @ < IF
Dest 2@ + C! 1 CHARS Dest +!

ELSE
DROP -1 SubstErr !
THEN
7
formName \ c-addr len —-- c-addr’ len’

\ Given a source string pointing at a leading delimiter, place the name string in the name buffer.
1 /STRING 2DUP delim scan >R DROP \ find length of residue
2DUP R> - DUP >R Name place \ save name in buffer
R> 1 CHARS + /STRING \ step over name and trailing %

: >dest \ c-addr len —-
\ Add a string to the output string.
bounds ?DO
I CQ@ addDest
1 CHARS +LOOP

: processName \ -- flag
\ Process the last substitution name. Return true if found, O if not found.
Name COUNT findSubst DUP >R IF
EXECUTE COUNT >dest

ELSE
delim addDest Name COUNT >dest delim addDest
THEN
R>
: SUBSTITUTE \ src slen dest dlen —-- dest dlen’ n
\ Expand the source string using substitutions.
\ Note that this version is simplistic, performs no error checking,
\ and requires a global buffer and global variables.
Destlen ! 0 Dest 2! 0 -rot \ -- 0 src slen
0 SubstErr !
BEGIN
DUP 0 >
WHILE

implement 265

E. Reference Implementations

Forth 200x / 18.1

OVER CQ@ delim <> IF
OVER C@ addDest 1 /STRING
ELSE
OVER 1 CHARS + CQ delim = IF
delim addDest 2 /STRING
ELSE
formName processName IF
ROT 1+ -rot
THEN
THEN
THEN
REPEAT
2DROP Dest 2@ ROT SubstErr @ IF
DROP SubstErr @
THEN

4

E.17.6.2.2375 UNESCAPE

\ character not %

\ %% for one output %
\ add one % to output

\ count substitutions

UNESCAPE \ c-addrl lenl c-addr2 -- c-addr2 len?
\ Replace each ’%’ character in the input string c-addr; len; with two *%’ characters.

\ The output is represented by c-addr, len;.

\ If you pass a string through UNESCAPE and then SUBSTITUTE, you get the original string.

DUP 2SWAP OVER + SWAP ?DO
I CQ [CHAR] % = IF
[CHAR] % OVER C! 1+
THEN
I CQ OVER C! 1+
LOOP
OVER -

E.18 The optional Extended-Character word set

This reference implementation assumes the UTF-8 character encoding is being used.

E.18.6.1.2486.50 X-SIZE

: X-SIZE (xc—addr ul -- u2)
0= IF DROP 0 EXIT THEN

\ length of UTF-8 char starting at u8-addr (accesses only u§-addr)

ca

DUP 580 U< IF DROP 1 EXIT THEN
DUP $c0O U< IF -77 THROW THEN
DUP $e(0 U< IF DROP 2 EXIT THEN
DUP $f0 U< IF DROP 3 EXIT THEN
DUP $f8 U< IF DROP 4 EXIT THEN
DUP S$fc U< IF DROP 5 EXIT THEN

266

implement

Forth 200x / 18.1 E. Reference Implementations

DUP $fe U< IF DROP 6 EXIT THEN
-77 THROW ;

E.18.6.1.2487.10 XC!+

: XC'+ (xchar xc—-addr —-- xc—addr’)
OVER $80 U< IF TUCK C! CHAR+ EXIT THEN \ qwcmlameASCH

>R 0 SWAP S$3F

BEGIN 2DUP U> WHILE
2/ >R DUP $3F AND $80 OR SWAP 6 RSHIFT R>

REPEAT $7F XOR 2% OR R>
BEGIN OVER $80 U< 0= WHILE TUCK C! CHAR+ REPEAT NIP

E.18.6.1.2487.15 XC!'+?
XC!'+? (xchar xc-addr u -- xc-addr’ u’ flag)

>R OVER XC-SIZE R@ OVER U< IF (xchar xc-addrl len r: ul)
\ not enough space
DROP NIP R> FALSE
ELSE
>R XC!+ R> R> SWAP - TRUE
THEN ;
E.18.6.1.2487.20 XxcC,
XC, (xchar --) HERE XC!+ DP ! ;
E.18.6.1.2487.25 XC-SIZE
: XC-SIZE (xchar -— n)
DUP $80 U< IF DROP 1 EXIT THEN \ special case ASCII
$800 2 >R
BEGIN 2DUP U>= WHILE 5 LSHIFT R> 1+ >R DUP 0= UNTIL THEN
2DROP R>

E.18.6.1.2487.35 XcCQ@+

: XC@+ (xc—addr —-- xc—addr’ u)
COUNT DUP $80 U< IF EXIT THEN \ special case ASCII

$7F AND $40 >R
BEGIN DUP R@ AND WHILE R@ XOR
6 LSHIFT R> 5 LSHIFT >R >R COUNT

$3F AND R> OR
REPEAT R> DROP

E.18.6.1.2487.40 XCHAR+
XCHAR+ (xc—addr -- xc—-addr’) XC@+ DROP ;

implement 267

E. Reference Implementations Forth 200x / 18.1

E.18.6.1.2488.10 XEMIT

: XEMIT (xchar —-)
DUP $80 U< IF EMIT EXIT THEN \ special case ASCII

0 SWAP S$3F
BEGIN 2DUP U> WHILE
2/ >R DUP $3F AND $80 OR SWAP 6 RSHIFT R>

REPEAT $7F XOR 2% OR
BEGIN DUP $80 U< 0= WHILE EMIT REPEAT DROP

E.18.6.1.2488.30 XKEY

: XKEY (—-- xchar)
KEY DUP $80 U< IF EXIT THEN \ special case ASCIL
$7F AND $40 >R
BEGIN DUP R@ AND WHILE R@ XOR
6 LSHIFT R> 5 LSHIFT >R >R KEY
$3F AND R> OR
REPEAT R> DROP ;

E.18.6.2.0145 +X/STRING
+X/STRING (xc—-addrl ul —-- xc-addr2 u2)
OVER DUP XCHAR+ SWAP - /STRING ;

E.18.6.2.0175 -TRAILING-GARBAGE
: =TRAILING-GARBAGE (xc—-addr ul —-- xc-addr u2)

2DUP + DUP XCHAR- (addr ul endl end2)

2DUP DUP OVER OVER - X-SIZE + = IF \ lastxchar ok
2DROP

ELSE
NIP NIP OVER -

THEN ;

E.18.6.2.0895 CHAR
CHAR ("name" —-- xchar) BL WORD COUNT DROP XC@+ NIP ;

E.18.6.2.2486.70 X-WIDTH

X-WIDTH (xc—addr u —— n)
0 ROT ROT OVER + SWAP ?DO

I XC@+ SWAP >R XC-WIDTH +
R> I - +LOOP ;

E.18.6.2.2487.30 XC-WIDTH

wc, (n low high ——) 1+ , , , ;
CREATE wc—-table \ derived from wcwidth source code, for UCS32
0 0300 0357 wc, 0 035D 036F wc, 0 0483 0486 wc,
0 0488 0489 wc, 0 0591 05A1 wc, 0 05A3 05B9 wc,
0 O05BB 05BD wc, 0 O5BF O05BF wc, 0 05C1 05C2 wgc,
implement

268

Forth 200x / 18.1

E. Reference Implementations

0600 0603
0670 0670
06EA 06ED
0730 074A
093C 093C
0951 0954
09BC 09BC
09E2 O09E3
0A41 0A42
0A70 O0OA71
OAC1 OACS
OAE2 OAE3
0B3F OB3F
0B56 0B56
0BCD OBCD
0C4A 0C4D
0CBF O0OCBF
0D41 0D43

0 05C4 05C4 wc, 0
0 064B 0658 wc, 0
0 O06E7 O06E8 wc, 0
0 0711 0711 wc, 0
0 0901 0902 wc, 0
0 094D 094D wc, 0
0 0981 0981 wc, 0
0 09CD 09CD wc, 0
0 OA3C O0A3C wc, 0
0 O0A4B 0A4D wc, 0
0 O0ABC O0ABC wc, 0
0 O0ACD OACD wc, 0
0 O0B3C O0B3C wc, 0
0 0B4D O0B4D wc, 0
0 O0BCO OBCO wc, 0
0 0C46 0C48 wc, 0
0 O0CBC O0CBC wc, 0
0 0ccc 0CCD wc, 0
0 ODCA O0DCA wc, 0O ODD2 0DD4
0 OE31 O0E31 wc, 0 OE34 OE3A
0 OEB1 0OEB1 wc, 0 OEB4 OEB9
0 OEC8 O0ECD wc, 0 OFl18 O0F19
0 OF37 O0F37 wc, 0 O0F39 O0F39
0 OF80 O0F84 wc, 0 O0F86 O0F87
0 O0F99 OFBC wc, 0 OFC6 OFCé6
0 1032 1032 wc, 0 1036 1037
0 1058 1059 wc, 1 0000 1100
0 1160 11FF wc, 0 1712 1714
0 1752 1753 wc, 0O 1772 1773
0 17B7 17BD wc, 0 17Ce 17Ce6
0 17pD 17DD wc, 0 180B 180D
0 1920 1922 wc, 0 1927 1928
0 1939 193B wc, 0 200B 200F
0 2060 2063 wc, 0 206A 206F
2 2329 232A wc, 0 302A 302F
0 3099 309A wc, 2 3040 AA4CF
2 F900 FAFF wc, 0 FB1E FBIE
0 FE20 FE23 wc, 2 FE30 FE6F
2 FFOO FF60 wc, 2 FFEO FFEG6
0 1D167 1D169 wc, 0 1D173 1D182
0 1D1AA 1D1AD wc, 2 20000 2FFFD
0 E0001 EOO001 wc, 0 E0020 EOO7F
HERE wc-table — CONSTANT #wc-table

\ inefficient table walk:

XC-WIDTH (xchar -—— n)

wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wC,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,
wc,

ODN O OO ONDNOOOOOOONOOOOOOOOOOOOOOOOLLLOLOOOOOOOo

0610
06D6
070F
07A6
0941
0962
09C1
0AQ01
0A47
0A81
0ACT
0BO1
0B41
0B82
0C3E
0C55
0CC6
0D4D
0DD6
0E47
OEBB
0F35
OF71
0F90
102D
1039
1100
1732
17B4
17C9
18A9
1932
202A
20D0
2E80
ACOO0
FEOO
FEFF
FFF9
1D185
30000
E0100

0615
06E4
070F
07B0O
0948
0963
09c4
0AO02
0A48
0A82
OACS
0BO1
0B43
0B82
0C40
0C56
0CCe
0D4D
0DD6
OE4E
OEBC
0F35
OF7E
0F97
1030
1039
115f
1734
17B5
17D3
18A9
1932
202E
20EA
303E
D7A3
FEOF
FEFF
FEFFB
1D18B
3FFFD
EOLEF

wc,
wec,
wC,
wC,
wcC,
wc,
wc,
wc,
wC,
wcC,
wc,
wc,
wc,
wc,
wC,
wC,
wc,
weC,
wc,
wC,
wcC,
wc,
wc,
wc,
wC,
wC,
wC,
wc,
wc,
wc,
wC,
wC,
wc,
weC,
wc,
wC,
wc,
wc,
wc,
wc,
wC,
wC,

implement

269

E. Reference Implementations Forth 200x / 18.1

wc—-table #wc-table OVER + SWAP °?DO
DUP I 2@ WITHIN IF DROP I 2 CELLS + @ UNLOOP EXIT THEN
3 CELLS +LOOP DROP 1 ;

E.18.6.2.2487.45 XCHAR-
XCHAR- (xc—-addr —-- xc—addr’)
BEGIN 1 CHARS — DUP C@ $CO AND $80 <> UNTIL ;
E.18.6.2.2488.20 XHOLD
CREATE xholdbuf 8 ALLOT

XHOLD (xchar --) xholdbuf TUCK XC!+4+ OVER - HOLDS ;
E.18.6.2.2495 X\STRING-
X\STRING- (xc—addr u —-- xc—addr u’)

OVER + XCHAR- OVER - ;

E.18.6.2.2520 [CHAR]
[CHAR] ("name" —-- rt:xchar)
CHAR POSTPONE LITERAL ; IMMEDIATE

270 implement

Forth 200x / 18.1 F. Test Suite

Annex F
(informative)
Test Suite

F.1 Introduction

After the publication of the original ANS Forth document (ANSI X3.215-1994), John Hayes developed a
test suite, which included both a test harness and a suite of core tests. The harness was extended by Anton
Ertl and David N. Williams to allow the testing of floating point operations. The current revision of the test
harness is available from the web site:

http://www.forth200x.0org/tests/ttester.fs

The teat harness can be used to define regression tests for a set of application words. It can also be used to
define tests of words in a standard-conforming implementation.

Numerous people have contributed to the test cases given in section F.3 onwards. The majority of the test
cases have been taken from John Hayes’ test suite', Gerry Jackson’s test suite” and David Williams with
significant contributions from the committee.

F.2 Test Harness

The tester defines functions that compare the results of a test with a set of expected results. The syntax for

each test starts with “T {” (T-open brace) followed by a code sequence to test. This is followed by “—>",
the expected results, and “} T” (close brace-T). For example, the following:

T{ 1 1 + -—> 2 }T
tests that one plus one indeed equals two.

The “T {” records the stack depth prior to the test code so that they can be eliminated from the test. The
“~>" records the stack depth and moves the entire stack contents to an array. In the example test, the
recorded stack depth is one and the saved array contains one value, two. The “} T” compares the current
stack depth to the saved stack depth. If they are equal each value on the stack is removed from the stack
and compared to its corresponding value in the array. If the depths are not equal or if the stack comparison
fails, an error is reported. For example:

T{ 1 2 3 SWAP -> 1 3 2 }T
T{ 1 2 3 SWAP —> 1 2 3 }T INCORRECT RESULT: T{ 1 2 3 SWAP -> 1 2 3 }T
T{ 1 2 SWAP —-> 1 }T WRONG NUMBER OF RESULTS: T{ 1 2 SWAP -> 1 }T

F.2.1 Floating-Point

Floating point testing can involve further complications. The harness attempts to determine whether
floating-point support is present, and if so, whether there is a separate floating-point stack, and behave

'http://www.taygeta.com/forth.html
2http://soton.mpeforth.com/flag/anstests/index.html

testsuite 271

http://www.forth200x.org/tests/ttester.fs
http://www.taygeta.com/forth.html
http://soton.mpeforth.com/flag/anstests/index.html

F. Test Suite Forth 200x / 18.1

accordingly. The CONSTANTs HAS-FLOATING and HAS-FLOATING-STACK contain the results of its
efforts, so the behavior of the code can be modified by the user if necessary.

Then there are the perennial issues of floating point value comparisons. Exact equality is specified by
SET-EXACT (the default). If approximate equality tests are desired, execute SET-NEAR. Then the
FVARIABLES REL-NEAR (default 1E-12) and ABS—-NEAR (default OE) contain the values to be used
in comparisons by the (internal) word FNEARLY=.

When there is not a separate floating point stack, and you want to use approximate equality for FP values,
it is necessary to identify which stack items are floating point quantities. This can be done by replacing
the closing } T with a version that specifies this, such as RRXR} T which identifies the stack picture
(rrxr). The harness provides such words for all combinations of R and X with up to four stack items. They
can be used with either an integrated or a separate floating point stacks. Adding more if you need them is
straightforward; see the examples in the source. Here is an example which also illustrates controlling the
precision of comparisons:

SET-NEAR
1E-6 REL-NEAR F'!
T{ S" 3.14159E" >FLOAT -> -1E FACOS <TRUE> RX}T

F.2.2 Error Processing

The internal word ERROR is vectored, through the ERROR-XT variable, so that its action can be changed
by the user (for example, to add a counter for the number of errors). The default action ERROR1 can be
used as a factor in the display of error reports.

F.2.3 Source

The following source code provides the test harness.

\ This is the source for the ANS test harness, it is based on the
\ harness originally developed by John Hayes

(C) 1995 JOHNS HOPKINS UNIVERSITY / APPLIED PHYSICS LABORATORY
MAY BE DISTRIBUTED FREELY AS LONG AS THIS COPYRIGHT NOTICE REMAINS.
VERSION 1.1

~

Revision history and possibly newer versions can be found at
http://www.forth200x/tests/ttester.fs

~ -~

BASE Q@
HEX

VARIABLE ACTUAL-DEPTH \ stack record
CREATE ACTUAL-RESULTS 20 CELLS ALLOT
VARIABLE START-DEPTH

VARIABLE XCURSOR \ for ...}T
VARIABLE ERROR-XT

272 testsuite

Forth 200x / 18.1 F. Test Suite

ERROR ERROR-XT @ EXECUTE ; \ for vectoring of error reporting

"FLOATING" S" FLOATING" ; \ only compiled S" in CORE
"FLOATING-STACK" S" FLOATING-STACK" ;
"FLOATING" ENVIRONMENT? [IF]
[IF]
TRUE
[ELSE]
FALSE
[THEN]
[ELSE]
FALSE
[THEN] CONSTANT HAS-FLOATING

"FLOATING-STACK" ENVIRONMENT? [IF]
[IF]
TRUE
[ELSE]
FALSE
[THEN]
[ELSE] \ We don’t know whether the FP stack is separate.
HAS-FLOATING \ If we have FLOATING, we assume it is.
[THEN] CONSTANT HAS-FLOATING-STACK

HAS-FLOATING [IF]
\ Set the following to the relative and absolute tolerances you
\ want for approximate float equality, to be used with F in

\ FNEARLY=. Keep the signs, because F needs themn.
FVARIABLE REL-NEAR DECIMAL 1E-12 HEX REL-NEAR F!
FVARIABLE ABS-NEAR DECIMAL 0E HEX ABS-NEAR F'!

\ When EXACT? is TRUE, }F uses FEXACTLY=, otherwise FNEARLY=.

TRUE VALUE EXACT?

SET-EXACT (--) TRUE TO EXACT? ;

SET-NEAR (--) FALSE TO EXACT? ;
DECIMAL

FEXACTLY= (F: X Y —— S: FLAG)

(

Leave TRUE if the two floats are identical.
)
OE F~ ;

HEX

FABS= (F: XY —— S: FLAG)

testsuite 273

F. Test Suite

Forth 200x / 18.1

(

Leave TRUE if the two floats are equal within the tolerance

stored in ABS-NEAR.

)
ABS-NEAR F@ F~ ;

FREL= (F: X Y -- S: FLAG
(

Leave TRUE if the two floats are relatively equal based on the

tolerance stored in ABS-NEAR.

)
REL-NEAR FQ FNEGATE F~ ;

F2DUP FOVER FOVER ;
F2DROP FDROP FDROP ;

FNEARLY= (F: X Y —— S: FLAG

(

Leave TRUE if the two floats are nearly equal.
refinement of Dirk Zoller’s FEQ to also allow X =

This is a
including

both zero, or to allow approximately equality when X and Y are too
small to satisfy the relative approximation mode in the F~

specification.

)

F2DUP FEXACTLY= IF F2DROP TRUE EXIT THEN

F2DUP FREL= IF F2DROP TRUE EXIT
FABS= ;
FCONF= (Rl R2 —— F)
EXACT? IF
FEXACTLY=
ELSE
FNEARLY=
THEN ;
[THEN]

HAS-FLOATING-STACK [IF]
VARIABLE ACTUAL-FDEPTH

THEN

CREATE ACTUAL-FRESULTS 20 FLOATS ALLOT

VARIABLE START-FDEPTH
VARIABLE FCURSOR

EMPTY-FSTACK (... —— ...
FDEPTH START-FDEPTH @ < I

FDEPTH START-FDEPTH @ SWAP DO OE LOOP

THEN

)

274

testsuite

Forth 200x / 18.1 F. Test Suite

FDEPTH START-FDEPTH @ > IF

FDEPTH START-FDEPTH @ DO FDROP LOOP
THEN ;

F{ (—)

FDEPTH START-FDEPTH ! 0 FCURSOR ! ;
F—> (... — ...)

FDEPTH DUP ACTUAL-FDEPTH !
START-FDEPTH @ > IF

FDEPTH START-FDEPTH @ — 0 DO ACTUAL-FRESULTS I FLOATS + F! LOOP
THEN ;

F} (... — ..00)
FDEPTH ACTUAL-FDEPTH @ = IF
FDEPTH START-FDEPTH @ > IF
FDEPTH START-FDEPTH @ — 0O DO
ACTUAL-FRESULTS I FLOATS + F@ FCONF= INVERT IF

S" INCORRECT FP RESULT: " ERROR LEAVE
THEN
LOOP
THEN
ELSE
S" WRONG NUMBER OF FP RESULTS: " ERROR
THEN ;
F...})T (—)
FCURSOR @ START-FDEPTH @ + ACTUAL-FDEPTH @ <> IF
S" NUMBER OF FLOAT RESULTS BEFORE ’->’ DOES NOT MATCH ...}T "
S" SPECIFICATION: " ERROR

ELSE FDEPTH START-FDEPTH @ = 0= IF

S" NUMBER OF FLOAT RESULTS BEFORE AND AFTER ’->’ DOES NOT MATCH: "
ERROR

THEN THEN ;

FTESTER (R ——)
FDEPTH 0= ACTUAL-FDEPTH @ FCURSOR @ START-FDEPTH @ + 1+ < OR IF

S" NUMBER OF FLOAT RESULTS AFTER ’'—->' BELOW ...}T SPECIFICATION: "
ERROR

ELSE ACTUAL-FRESULTS FCURSOR @ FLOATS + F@ FCONF= 0= IF
S" INCORRECT FP RESULT: " ERROR

THEN THEN

1 FCURSOR +! ;

[ELSE]
EMPTY-FSTACK

4

testsuite 275

F. Test Suite Forth 200x / 18.1

F{
F->
F}
F...}T ;

HAS-FLOATING [IF]

DECIMAL
COMPUTE-CELLS-PER-FP (-—- U)
DEPTH OE DEPTH 1- >R FDROP R> SWAP - ;
HEX

COMPUTE-CELLS-PER-FP CONSTANT CELLS-PER-FP

FTESTER (R ——)

DEPTH CELLS-PER-FP <

ACTUAL-DEPTH @ XCURSOR @ START-DEPTH @ + CELLS-PER-FP + <

OR IF
S" NUMBER OF RESULTS AFTER ’'->' BELOW ...}T SPECIFICATION: "
ERROR EXIT

ELSE ACTUAL-RESULTS XCURSOR @ CELLS + F@ FCONF= 0= IF

S" INCORRECT FP RESULT: " ERROR
THEN THEN
CELLS-PER-FP XCURSOR +! ;
[THEN]
[THEN]
EMPTY-STACK \ (... ——) empty stack; handles underflowed stack too.

DEPTH START-DEPTH @ < IF

DEPTH START-DEPTH @ SWAP DO 0O LOOP
THEN
DEPTH START-DEPTH @ > IF

DEPTH START-DEPTH @ DO DROP LOOP
THEN
EMPTY-FSTACK ;

ERROR1 \ (C-ADDR U --) display an error message

\ followed by the line that had the error.
TYPE SOURCE TYPE CR \ display line corresponding to error
EMPTY-STACK \ throw away everything else

" ERROR1 ERROR-XT !

T{ \ (——) record the pre-test depth.
DEPTH START-DEPTH ! 0 XCURSOR ! F{ ;

276 testsuite

Forth 200x / 18.1 F. Test Suite

-> \ (... ——) record depth and contents of stack.
DEPTH DUP ACTUAL-DEPTH ! \ record depth
START-DEPTH @ > IF \ if there is something on the stack
DEPTH START-DEPTH @ - 0 DO \ save them
ACTUAL-RESULTS I CELLS + !

LOOP
THEN
F=>
}T\ (... ——) comapre stack (expected) contents with saved
\ (actual) contents.
DEPTH ACTUAL-DEPTH @ = IF \ if depths match
DEPTH START-DEPTH @ > IF \ if something on the stack
DEPTH START-DEPTH @ - 0 DO \ for each stack item
ACTUAL-RESULTS I CELLS + @ \ compare actual with expected
<> IF S" INCORRECT RESULT: " ERROR LEAVE THEN
LOOP
THEN
ELSE \ depth mismatch
S" WRONG NUMBER OF RESULTS: " ERROR
THEN
F}
3T (=)
XCURSOR @ START-DEPTH @ + ACTUAL-DEPTH @ <> IF
S" NUMBER OF CELL RESULTS BEFORE ’->’" DOES NOT MATCH ...}T "
S" SPECIFICATION: " ERROR

ELSE DEPTH START-DEPTH @ = 0= IF
S" NUMBER OF CELL RESULTS BEFORE AND AFTER ’'—->’ DOES NOT MATCH: "
ERROR

THEN THEN

F...}T ;

XTESTER (X ——)

DEPTH 0= ACTUAL-DEPTH @ XCURSOR @ START-DEPTH @ + 14+ < OR IF
S" NUMBER OF CELL RESULTS AFTER ’->’ BELOW ...}T SPECIFICATION: "
ERROR EXIT

ELSE ACTUAL-RESULTS XCURSOR @ CELLS + @ <> IF
S" INCORRECT CELL RESULT: " ERROR

THEN THEN

1 XCURSOR +! ;

X}T XTESTER 3T
XX}T XTESTER XTESTER P
XXX}T XTESTER XTESTER XTESTER 3T
XXXX}T XTESTER XTESTER XTESTER XTESTER ...}T ;

testsuite 277

F. Test Suite

Forth 200x / 18.1

HAS-FLOATING [IF]

R}T FTESTER 3T
XR}T FTESTER XTESTER 3T
RX}T XTESTER FTESTER 3T
RR}T FTESTER FTESTER LT
XXR}T FTESTER XTESTER XTESTER 3T
XRX}T XTESTER FTESTER XTESTER 3T
XRR}T FTESTER FTESTER XTESTER 3T
RXX}T XTESTER XTESTER FTESTER L 3T
RXR}T FTESTER XTESTER FTESTER 3T
RRX}T XTESTER FTESTER FTESTER 3T
RRR}T FTESTER FTESTER FTESTER 3T
XXXR}T FTESTER XTESTER XTESTER XTESTER 3T
XXRX}T XTESTER FTESTER XTESTER XTESTER L 3T
XXRR}T FTESTER FTESTER XTESTER XTESTER ...}T ;
XRXX}T XTESTER XTESTER FTESTER XTESTER ...}T ;
XRXR}T FTESTER XTESTER FTESTER XTESTER 3T
XRRX}T XTESTER FTESTER FTESTER XTESTER 3T
XRRR}T FTESTER FTESTER FTESTER XTESTER L 3T
RXXX}T XTESTER XTESTER XTESTER FTESTER ...}T ;
RXXR}T FTESTER XTESTER XTESTER FTESTER ...}T ;
RXRX}T XTESTER FTESTER XTESTER FTESTER T
RXRR}T FTESTER FTESTER XTESTER FTESTER 3T
RRXX}T XTESTER XTESTER FTESTER FTESTER 3T
RRXR}T FTESTER XTESTER FTESTER FTESTER L 3T
RRRX}T XTESTER FTESTER FTESTER FTESTER ...}T ;
: RRRR}T FTESTER FTESTER FTESTER FTESTER 3T
[THEN]
\ Set the following flag to TRUE for more verbose output; this may
\ allow you to tell which test caused your system to hang.
VARIABLE VERBOSE
FALSE VERBOSE !
TESTING \ (——) TALKING COMMENT.
SOURCE VERBOSE (@
IF DUP >R TYPE CR R> >IN !
ELSE >IN ! DROP
THEN ;
BASE !
278 testsuite

Forth 200x / 18.1 F. Test Suite

F.3 Core Tests

The test cases in John Hayes’ original test suite were designed to test features before they were used in
later tests. Due to the structure of this annex the progressive testing has been lost. This section attempts to
retain the integrity of the original test suite by laying out the test progression for the core word set.

While this suite does test many aspects of the core word set, it is not comprehensive. A standard system
should pass all of the tests within this suite. A system cannot claim to be standard simply because it passes
this test suite.

The test starts by verifying basic assumptions about number representation. It then builds on this with
tests of boolean logic, shifting, and comparisons. It then tests the basic stack manipulations and arithmetic.
Ultimately, it tests the Forth interpreter and compiler.

Note that all of the tests in this suite assume the current base is hexadecimal.

F.3.1 Basic Assumptions

These test assume a two’s complement implementation where the range of signed numbers is —2"~! ---
2"=1 _ 1 and the range of unsinged numbers is 0 --- 2" — 1.

A method for testing KEY, QUIT, ABORT, ABORT", ENVIRONMENT ?, etc has yet to be proposed.

T{ -> }T (Start with a clean slate)

(Test if any bits are set; Answer in base 1)

T{ : BITSSET? IF 0 0 ELSE 0 THEN ; -> }T

T{ O BITSSET? —-> 0 }T (Zero is all bits clear)

T{ 1 BITSSET? -> 0 0 }T (Other numbers have at least one bit)
T{ -1 BITSSET? -> 0 0 }T

F.3.2 Booleans

To test the booleans it is first neccessary to test F.6.1.0720 AND, and F.6.1.1720 INVERT. Before moving
on to the test F.6.1.0950 CONSTANT. The latter defines two constants (0S and 1S) which will be used in
the further test.

It is now possible to complete the testing of F.6.1.0720 AND, F.6.1.1980 OR, and F.6.1.2490 XOR.

F.3.3 Shifts

To test the shift operators it is necessary to calculate the most significant bit of a cell:
1S 1 RSHIFT INVERT CONSTANT MSB

RSHIFT is tested later. MSB must have at least one bit set:
T{ MSB BITSSET? -> 0 0 }T

The test F.6.1.0320 2+, F.6.1.0330 2/, F.6.1.1805 LSHIFT, and F.6.1.2162 RSHIFT can now be per-
formed.

testsuite 279

F. Test Suite

Forth 200x / 18.1

F.3.4 Numeric notation

The numeric representation can be tested with the following test cases:

DECIMAL

T{ #1289 -> 1289 }T
T{ #12346789. —-> 12346789. }T
T{ #-1289 -> -1289 3T
T{ #-12346789. —> -12346789. }T
T{ $12eF -> 4847 }T
T{ $12aBcDeF. —-> 313249263. T
T{ $-12eF -> —4847 1T
T{ $-12AbCdEf. —-> -313249263. }T
T{ %$10010110 -> 150 3T
T{ %10010110. -> 150. 1T
T{ %-10010110 -> -150 1T
T{ %-10010110. -> -150. 1T
T{ "z’ -> 122 1T

F.3.5 Comparisons

Before testing the comparison operators it is necessary to define a few constants to allow the testing of the
upper and lower bounds.

INVERT CONSTANT MAX-UINT
INVERT 1 RSHIFT CONSTANT MAX-INT
INVERT 1 RSHIFT INVERT CONSTANT MIN-INT
INVERT 1 RSHIFT CONSTANT MID-UINT
INVERT 1 RSHIFT INVERT CONSTANT MID-UINT+1

O O O O O

0S CONSTANT <FALSE>
1S CONSTANT <TRUE>

With these constants defined, it is now possible to perform the F.6.1.0270 0=, F.6.1.0530 =, F.6.1.0250
0<, F.6.1.0480 <, F.6.1.0540 >, F.6.1.2340 U<, F.6.1.1880 MIN, and F.6.1.1870 MAX test.

F.3.6 Stack Operators
The stack operators can be tested without any prepatory work. The “normal” operators (F.6.1.1260 DROP,
F.6.1.1290 DUP, F.6.1.1990 OVER, F.6.1.2160 ROT, and F.6.1.2260 SWAP) should be tested first, followed

by the two-cell variants (F.6.1.0370 2DROP, F.6.1.0380 2pUP, F.6.1.0400 20VER and
F.6.1.0430 2SwWAP) with F.6.1.0630 ?DUP and F.6.1.1200 DEP TH being performed last.

F.3.7 Return Stack Operators

The test F.6.1.0580 >R will test all three basic return stack operators (>R, R>, and R@).

280 testsuite

Forth 200x / 18.1 F. Test Suite

F.3.8 Addition and Subtraction

Basic addition and subtraction should be tested in the order: F.6.1.0120 +, F.6.1.0160 —, F.6.1.0290 1+,
F.6.1.0300 1-, F.6.1.0690 ABS and F.6.1.1910 NEGATE.

F.3.9 Multiplication

The multiplication operators should be tested in the order: F.6.1.2170 S>D, F.6.1.0090 ~, F.6.1.1810 M,
and F.6.1.2360 UMx.

F.3.10 Division

Due to the complexity of the division operators they are tested separately from the multiplication operators.
The basic division operators are tested first: F.6.1.1561 ¥M/MOD, F.6.1.2214 SM/REM, and F.6.1.2370
UM/MOD.

As the standard allows a system to provide either floored or symmetric division, the remaining operators
have to be tested depending on the system behaviour. Two words are defined that provide a form of
conditional compilation.

IFFLOORED [-3 2 / -2 INVERT] LITERAL IF POSTPONE \ THEN ;
IFSYM [-3 2 / -1 = INVERT] LITERAL IF POSTPONE \ THEN ;

IFSYM will ignore the rest of the line when it is performed on a system with floored division and perform
the line on a system with symmetric division. IFFLOORED is the direct inverse, ignoring the rest of the
line on systems with symmetric division and processing it on systems with floored division.

The remaining division operators are tested by defining a version of the operator using words which have
already been tested (S>D, M*, FM/MOD and SM/REM). The test definition handles the special case of
differing signes. As the test definitions use the words which have just been tested, the tests must be
performed in the order: F.6.1.0240 /MOD, F.6.1.0230 /, F.6.1.1890 MOD, F.6.1.0100 ~/, and F.6.1.0110
* /MOD.

F.3.11 Memory

As with the other sections, the tests for the memory access words build on previously tested words and thus
require an order to the testing.

The first test (F.6.1.0150 , (comma)) tests HERE, the signle cell memory access words @, ! and CELL+ as
well as the double cell access words 2@ and 2!. The tests F.6.1.0130 +! and F.6.1.0890 CELLS should
then be performed.

The test (F.6.1.0860 C,) also tests the single character memory words C@, C!, and CHAR+, leaving the test
F.6.1.0898 CHARS to be performed seperatly.

Finally, the memory access alignment test F.6.1.0705 ALIGN includes a test of ALIGNED, leaving
F.6.1.0710 ALLOT as the final test in this group.

F.3.12 Characters

Basic character handling: F.6.1.0770 BL, F.6.1.0895 CHAR, F.6.1.2520 [CHAR], F.6.1.2500 [which also
tests], and F.6.1.2165 s".

testsuite 281

F. Test Suite Forth 200x / 18.1

F.3.13 Dictionary

The dictionary tests define a number of words as part of the test, these are included in the approperate test:
F.6.1.0070 ', F.6.1.2510 [’] both of which also test EXECUTE, F.6.1.1550 FIND, F.6.1.1780 LITERAL,
F.6.1.0980 COUNT, F.6.1.2033 POSTPONE, F.6.1.2250 STATE

F.3.14 Flow Control

The flow control words have to be tested in matching groups. First test F.6.1.1700 IF, ELSE, THEN group.
Followed by the BEGIN, F.6.1.2430 WHILE, REPEAT group, and the BEGIN, F.6.1.2390 UNTIL pairing.
Finally the F.6.1.2120 RECURSE function should be tested.

F.3.15 Counted Loops

Counted loops have a set of special condition that require testing. As with the flow control words, these
words have to be tested as a group. First the basic counted loop: DO; I; F.6.1.1800 LOOP, followed by
loops with a non regular increment: F.6.1.0140 +1.0OOP, loops within loops: F.6.1.1730 J, and aborted
loops: F.6.1.1760 LEAVE; F.6.1.2380 UNLOOP which includes a test for EXIT.

F.3.16 Defining Words

Although most of the defining words have already been used within the test suite, they still need to be tested
fully. The tests include F.6.1.0450 : which also tests ;, F.6.1.0950 CONSTANT, F.6.1.2410 VARIABLE,
F.6.1.1250 DOES> which includes tests CREATE, and F.6.1.0550 >BODY which also tests CREATE.

F.3.17 Evaluate
As with the defining words, F.6.1.1360 EVALUATE has already been used, but it must still be tested fully.

F.3.18 Parser Input Source Control

Testing of the input source can be quit dificult. The tests require line breaks within the test: F.6.1.2216
SOURCE, F.6.1.0560 >1N, and F.6.1.2450 WORD.

F.3.19 Number Patterns

The number formatting words produce a string, a word that compares two strings is required. This test
suite assumes that the optional String word set is unavailable. Thus a string comparison word is defined,
using only trusted words:

S= \ (ADDR1 Cl1 ADDR2 C2 -- T/F) Compare two strings.
>R SWAP R@ = IF \ Make sure strings have same length
R> ?DUP IF \ If non-empty strings
0 DO

OVER C@ OVER C@ - IF 2DROP <FALSE> UNLOOP EXIT THEN
SWAP CHAR+ SWAP CHAR+
LOOP
THEN
2DROP <TRUE> \ If we get here, strings match
ELSE

282 testsuite

Forth 200x / 18.1 F. Test Suite

R> DROP 2DROP <FALSE> \ Lengths mismatch
THEN ;

The number formatting words have to be tested as a group with F.6.1.1670 HOLD, F.6.1.2210 SIGN, and
F.6.1.0030 # all including tests for <# and #>.

Before the F.6.1.0050 #S test can be performed it is necessary to calculate the number of bits required to
store the largest double value.

24 CONSTANT MAX-BASE \ BASE 2 ... 36
COUNT-BITS
0 0 INVERT BEGIN DUP WHILE >R 1+ R> 2% REPEAT DROP ;
COUNT-BITS 2% CONSTANT #BITS-UD \ NUMBER OF BITS IN UD

The F.6.1.0570 >NUMBER test can now be performed. Finally, the F.6.1.0750 BASE test, which includes
tests for HEX and DECIMAL, can be performed.

F.3.20 Memory Movement
Frist two memory buffers are defined:

CREATE FBUF 00 C, 00 C, 00 C,
CREATE SBUF 12 C, 34 C, 56 C,
SEEBUF FBUF C@ FBUF CHAR+ CQ FBUF CHAR+ CHAR+ CQ ;

As the content of FBUF is changed by the F.6.1.1540 FILL test, this must be executed before the
F.6.1.1900 MOVE test.

F.3.21 Output

As there is no provision for capturing the output stream so that it can be compared to an expected result
there is not automatic method of testing the output generation words. The user is required to validate the
output for the F.6.1.1320 EMIT test. This tests the selection of output words ., . ", CR, SPACE, SPACES,
TYPE,and U..

F.3.22 Input

To test the input word (F.6.1.0695 ACCEPT) the user is required to type up to 80 characters. The system
will buffer the input sequence and output it to the user for inspection.

F.3.23 Dictionary Search Rules

The final test in this suite is included with F.6.1.0450 : and tests the search order of the dictionary. It
asserts that a definition that uses its own name in the definition is not recursive but rather refers to the
previous definition of the word.

T{ : GDX 123 ; —=> }T \ First defintion
T{ : GDX GDX 234 ; -> }T \ Second defintion
T{ GDX —> 123 234 }T

testsuite 283

F. Test Suite Forth 200x / 18.1

F.6 The Core word set

F.6.1.0010 !
See F.6.1.0150 , .

F.6.1.0030 #
GP3 <# 1 O # # #> s" 01" s= ;
T{ GP3 -> <TRUE> }T

F.6.1.0040 #>
See F.6.1.0030 #, F.6.1.0050 #S, F.6.1.1670 HOLD and F.6.1.2210 SIGN.

F.6.1.0050 #s
GP4 <# 1 0 #S #> s" 1" s= ;
T{ GP4 -> <TRUE> }T

GP5
BASE @ <TRUE>
MAX-BASE 1+ 2 DO \ FOR EACH POSSIBLE BASE
I BASE ! \ TBD: ASSUMES BASE WORKS
I 0 <# #S #> s" 10" S= AND
LOOP
SWAP BASE ! ;

T{ GP5 —-> <TRUE> }T

GP6
BASE @ >R 2 BASE !
MAX-UINT MAX-UINT <# #S #> \ MAXIMUM UD TO BINARY

R> BASE ! \ S: C-ADDR U

DUP #BITS-UD = SWAP

0 DO \ S: C-ADDR FLAG
OVER C@ [CHAR] 1 = AND \ ALL ONES

>R CHAR+ R>
LOOP SWAP DROP ;
T{ GP6 —-> <TRUE> }T

GP7
BASE @ >R MAX-BASE BASE !
<TRUE>
A 0 DO
I 0 <# #s #>
1] = SWAP CQR I 30 + = AND AND
LOOP
MAX-BASE A DO
I 0 <# #s #>
1 = SWAP CQR 41 I A - + = AND AND
LOOP
R> BASE ! ;
T{ GP7 —> <TRUE> }T

284 testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.0070 '

T{ : GT1 123 ; > }T
T{ ' GT1 EXECUTE -> 123 }T

F.6.1.0080 (

\ There is no space either side of the).

T{ (A comment)1234 -> }T
T{ : pcl (A comment)1234 ; pcl -> 1234 }T

F.6.1.0090 «
T{ 0 0 % -> 0 }T \ TEST IDENTITIE\S
T{ 0 1 % —-> 0 }T
T { 1 0 % —-—> 0 T
T { 1 2 % -> 2 1T
T{ 2 1 % —> 2 }T
T { 3 3 % —> 9)T
T{ -3 3 * —> -9 }T
T{ 3 -3 % -> -9 }T
T{ -3 -3 * —> 9 }T

T{ MID-UINT+1 1 RSHIFT 2 «*
T{ MID-UINT+1 2 RSHIFT 4 «*

F.6.1.0100 */
IFFLOORED : Tx/ T+/MOD SWAP DROP ;
IFSYM : T+/ T+/MOD SWAP DROP ;
T{ 02 1 %/ —> 02
T{ 12 1 %/ —> 12
T{ 2 2 1 %/ —> 2 2
T{ -1 2 1 %/ —> -1 2
T{ -2 2 1 %/ —> -2 2
T{ 02 -1 %/ -> 02
T { 12 -1 %/ -> 12
T{ 2 2 -1 %/ —-> 2 2
T{ -1 2 -1 %/ -> -1 2
T{ -2 2 -1 %/ -> -2 2
T{ 2 2 2 %/ —> 2 2
T{ -1 2 -1 %/ -> -1 2
T{ -2 2 -2 %/ —-> -2 2
T{ 7 2 3 %/ —> 7 2
T{ 7 2 -3 %/ —> 7 2
T{ -7 2 3 %/ —> -7 2
T{ -7 2 -3 %/ -> -7 2

Tx/
T/
Tx/
Tx/
T/
Tx/
T/
T/
T/
T/
Tx/
T*/
Tx/
T/
T/
Tx/
T*/

-> MID-UINT+1 }T
—> MID-UINT+1 }T
T{ MID-UINT+1 1 RSHIFT MID-UINT+1 OR 2 * —> MID-UINT+1 }T

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

testsuite

285

F. Test Suite Forth 200x / 18.1

T{ MAX-INT 2 MAX-INT %/ —-> MAX-INT 2 MAX-INT Tx/ }T
T{ MIN-INT 2 MIN-INT %/ —> MIN-INT 2 MIN-INT Tx/ }T

F.6.1.0110 */MOD

IFFLOORED : Tx/MOD >R Mx R> FM/MOD ;
IFSYM : T+/MOD >R Mx R> SM/REM ;
T{ 0 2 1 */MOD —> 02 1 T+«/MOD }T
T{ 12 1 *x/MOD —> 12 1 T+«/MOD }T
T{ 2 2 1 %=/MOD —> 2 2 1 T+«/MOD }T
T{ -1 2 1 %*/MOD -> -1 2 1 T+/MOD }T
T{ -2 2 1 */MOD —> -2 2 1 T+«/MOD }T
T{ 0 2 -1 */MOD —> 02 -1 Tx/MOD }T
T{ 12 -1 */MOD —> 12 -1 Tx/MOD }T
T{ 2 2 -1 %/MOD -> 2 2 -1 Tx/MOD }T
T{ -1 2 -1 %/MOD -> -1 2 -1 T+=/MOD }T
T{ -2 2 -1 */MOD —> -2 2 -1 Tx/MOD }T
T{ 2 2 2 %*/MOD -> 2 2 2 Tx/MOD }T
T{ -1 2 -1 */MOD —> -1 2 -1 Tx/MOD }T
T{ -2 2 -2 %/MOD —> -2 2 -2 Tx/MOD }T
T{ 72 3 *%/MOD —> 7 2 3 T+x/MOD }T
T{ 7 2 -3 %/MOD —> 72 -3 T*/MOD }T
T{ -7 2 3 */MOD -> -7 2 3 Tx/MOD }T
T{ -7 2 -3 */MOD —> -7 2 -3 Tx/MOD }T
T{ MAX-INT 2 MAX-INT */MOD —-> MAX-INT 2 MAX-INT T%/MOD }T
T{ MIN-INT 2 MIN-INT */MOD —-> MIN-INT 2 MIN-INT T/MOD }T
F.6.1.0120 +
T{ 0 5+ —> 5 }T
T{ 5 0+ —> 5 1T
T{ 0 -5+ —> -5 1T
T{ -5 0 + —> -5 }T
T{ 1 2+ —> 3)T
T{ 1 -2 + —> -1 }T
T{ -1 2+ —> 1 3}T
T{ -1 -2 + —> -3 1T
T{ -1 1+ —> 0 T
T{ MID-UINT 1 + -> MID-UINT+1 }T
F.6.1.0130 +!
T{ 0 1ST ! -> }T
T{ 1 1ST +! -> }T
T{ 1ST @ -> 1 }T

T{ -1 1ST 4! 1ST @ -> 0 }T

F.6.1.0140 +1LOOP
T{ : GD2 DO I -1 +LOOP ; -> }T
T{ 1 4 GD2 -> 4 3 2 1 }T

286 testsuite

Forth 200x / 18.1 F. Test Suite

T{ -1 2 Gb2 -> 2 1 0 -1 }T
T{ MID-UINT MID-UINT+1 GD2 -> MID-UINT+1 MID-UINT }T

VARIABLE gditerations
VARIABLE gdincrement

gd7 (limit start increment —--)
gdincrement !
0 gditerations !
DO
1 gditerations +!
I
gditerations @ 6 = IF LEAVE THEN
gdincrement @
+LOOP gditerations @

l4

T{ 4 4 -1 gd7 -> 4 1)T
T{ 1 4 -1gd7 -> 4 3 2 1 4 3T
T{ 4 1 -1gd7 -> 1 0 -1 -2 -3 -4 6 }T
T{ 4 1 0gd7-> 1 1 1 1 1 16 3T
T{ 0 0 0gd7-> 0 0 0 0O O 06 }T
T{ 1 4 0gd7 -> 4 4 4 4 4 46 3T
T{ 1 4 1gd7 -> 4 5 6 7 8 96 }T
T{ 4 1 1gd7 -> 1 2 3 3 3T
T{ 4 4 1gd7 -> 4 5 6 7 8 96 T
T{ 2 -1 -1 gd7 -> -1 -2 -3 -4 -5 -6 6 }T
T{ -1 2 -1gd7 -> 2 1 0 -1 4 3T
T{ 2 -1 0gd7 —> -1 -1 -1 -1 -1 -1 6 }T
T{ -1 2 0gd7 -> 2 2 2 2 2 26 }T
T{ -1 2 1gd7-> 2 3 4 5 6 76 }T
T{ 2 -1 1 gd7 -> -101 3)T
T{ -20 30 -10 gd7 -> 30 20 10 0 -10 -20 6 }T
T{ -20 31 -10 gd7 -> 31 21 11 1 -9 -19 6 }T
T{ -20 29 -10 gd7 -> 29 19 9 -1 -11 5 }T

\ With large and small increments

MAX-UINT 8 RSHIFT 1+ CONSTANT ustep
ustep NEGATE CONSTANT -ustep
MAX-INT 7 RSHIFT 1+ CONSTANT step
step NEGATE CONSTANT -step

VARIABLE bump
T{ : gd8 bump ! DO 1+ bump @ +LOOP ; -> }T

T{ 0 MAX-UINT 0O ustep gd8 -> 256 }T
T{ 0 0 MAX-UINT -ustep gd8 -> 256 }T

testsuite 287

F. Test Suite

Forth 200x / 18.1

T{ 0 MAX-INT MIN-INT step gd8 —-> 256 }T
T{ 0 MIN-INT MAX-INT -step gd8 -> 256 }T

F.6.1.0150 ,
HERE 1 ,
HERE 2 ,
CONSTANT 2ND
CONSTANT 1ST

T{ 1ST 2ND U< ->
T{ 1ST CELL+ -—> 2ND }T \
T{ 1ST 1 CELLS + -> 2ND }T
T{ 1ST @ 2ND @ -> 1 2 }T
T{ 5 1sT ! —> }T
T{ 1ST @ 2ND @ -> 5 2 }T
T{ 6 2ND ! > }T
T{ 1ST @ 2ND @ —-> 5 6 }T
T{ 1ST 2@ -> 6 5 }T
T{ 2 1 1sT 2! —>)T
T{ 1ST 2Q -> 2 1 }T
T{ 1S 1sT ! 1sT @ -> 1S }T
F.6.1.0160 -
T{ 0 5 - —> -5 1T
T{ 5 0 - —> 5 }T
T{ 0 -5 - —> 5 }T
T{ 5 0 - —-—> -5 }T
T{ 1 2 - - -1 }T
T{ 1 -2 - —> 3)T
T{ -1 2 - - -3 1T
T{ -1 -2 - —> 1 3}T
T{ 0o 1 - -> -1 }T
T{ MID-UINT+l1 1 - —-> MID-UINT }T
F.6.1.0180
See F.6.1.1320 EMIT.
F.6.1.0190 ."
T{ : pbl CR ." You should see 2345:
See F.6.1.1320 EMIT.
F.6.1.0230 /
IFFLOORED T/ T/MOD SWAP DROP ;
IFSYM : T/ T/MOD SWAP DROP ;
T{ 0 1/ — 0
T{ 1 1/ —> 1
T{ 2 1/ —> 2

\ CAN STORE CELL-WIDE VALUE

n

BY ONE CELL

" 2345";

1 T/ }T
1 T/ }T
1 T/ }T

pbl —>

<TRUE> }T\ HERE MUST GROW WITH ALLOT

}T

288

testsuite

Forth 200x / 18.1

F. Test Suite

TH{
T{
T{
T{
TH{
TH{
T{
T{
T{
T{
T{
T{
T{
TH{
T{
T{
TH{
T

-1 1

-2 1

0 -1

1 -1

2 -1

-1 -1

-2 -1

2 2

-1 -1

-2 -2

7 3

7 -3

=7 3

=7 -3
MAX-INT 1
MIN-INT 1

MAX-INT MAX-INT
MIN-INT MIN-INT

F.6.1.0240 /MOD

IFFLOORED
IFSYM

T{ 0 1
T{ 1 1
T{ 2 1
T{ -1 1
T{ -2 1
T{ 0 -1
T{ 1 -1
T{ 2 -1
T{ -1 -1
T{ -2 -1
T{ 2 2
T{ -1 -1
T{ -2 -2
T{ 7 3
T{ 7 -3
T{ -7 3
T{ -7 -3
T{ MAX-INT 1
T{ MIN-INT 1
T{ MAX-INT MAX-INT

T{

MIN-INT MIN-INT

A Y S S S N
|
\

/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD
/MOD

-1 1

-2 1

0 -1

1 -1

2 -1

-1 -1

-2 -1

2 2

-1 -1

-2 -2

7 3

7 -3

=7 3

=7 -3
MAX-INT 1
MIN-INT 1

MAX-INT MAX-INT
MIN-INT MIN-INT

T/MOD >R S>D R> FM/MOD ;
T/MOD >R S>D R> SM/REM ;

> 0
> 1
—> 2
—> -1
> -2
> 0
> 1
-> 2
—> -1
-> -2
> 2
> -1
-> -2
—> 7
—> 7
> =7
> -7
—-> MAX-INT
—> MIN-INT

T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/
T/

—> MAX-INT MAX-INT
—> MIN-INT MIN-INT

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

T/MOD
T/MOD
T /MOD
T/MOD
T/MOD
T/MOD
T/MOD
T /MOD
T /MOD
T/MOD
T/MOD
T/MOD
T /MOD
T /MOD
T/MOD
T/MOD
T/MOD
T/MOD
T /MOD
T/MOD
T/MOD

3T
3T
}T
3T
3T
3T
}T
3T
}T
3T
3T
3T
3T
}T
3T
3T
3T
3T
}T
3T
3T

testsuite

289

F. Test Suite Forth 200x / 18.1
F.6.1.0250 0<

T{ 0 0< —-> <FALSE> }T

T{ -1 0< -> <TRUE> }T

T{ MIN-INT 0< —-> <TRUE> }T

T{ 1 0< —-> <FALSE> }T

T{ MAX-INT 0< -> <FALSE> }T
F.6.1.0270 0=

T{ 0 0= -> <TRUE> }T

T{ 1 0= -> <FALSE> }T

T{ 2 0= —-> <FALSE> }T

T{ -1 0= -> <FALSE> }T

T{ MAX-UIN = —-> <FALSE> }T

T{ MIN-INT O= -> <FALSE> }T

T{ MAX-INT 0= -> <FALSE> }T
F.6.1.0290 1+

T{ 0 1+ —> 1 }T

T{ -1 1+ —> 0 }T

T{ 1 1+ —> 2 T

T{ MID-UINT 1+ -> MID-UINT+1 }T

T{ MAX-INT 1+ —> MIN-INT }T
F.6.1.0300 1-

T{ 2 1- —> 1 }T

T{ 1 1- —> 0 }T

T{ 0 1- —> -1 }T

T{ MID-UINT+1 1- -> MID-UINT }T

F.6.1.0310 2!
See F.6.1.0150 ,

F.6.1.0320 2=
T{ 0S5 2%
T{ 1 2%
T{ 4000 2=*
T{ 1S 2% 1 XOR
T{ MSB 2%
F.6.1.0330 2/
T{ 0s 2/
T{ 12/
T{ 4000 2/
T{ 1s 2/
T{ 1S 1 XOR 2/

T{ MSB 2/ MSB AND

-> 0s
> 2
-> 8000
-> 1S
-> 0s
> 0s
> 0
-> 2000
-> 1s
> 1s
-> MSB

}T
}T
}T
}T
}T

}T
}T
}T

} T\ MSB PROPOGATED

}T
}T

290

testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.0350 2@
See F.6.1.0150

F.6.1.0370 2DROP

I

T{ 1 2 2DROP -> }T

F.6.1.0380 2puP

T{ 1 2 2DUP -> 1

F.6.1.0400 20VER

21 2)T

20VER -> 1 2 3 41 2 }T

2SWAP -> 3 4 1 2 T

4

4

T{ 12 3 4
F.6.1.0430 2SwWAP
T{ 1 2 3 4
F.6.1.0450
T{ : NOP : POSTPONE
T{ NOP NOP1l NOP NOP2 ->
T{ NOP1 -> }T
T{ NOP2 -> }T

The following tests the dictionary search order:

123 ;

T{ GDX -> 123 234 }T

O R O N

AAANAANANANANANANAANANAANAANNA

MAX-INT
MAX-INT
0

1

0

1

-1

-1
MIN-INT
MIN-INT
0

T{ : GDX
F.6.1.0460 ;
See F.6.1.0450 :.
F.6.1.0480 <
T{ 0
T{ 1
T{ -1
T{ -1
T{ MIN-INT
T{ MIN-INT
T{ 0
T{ 0
T 1
T{ 1
T{ 2
T{ 0
T{ 1
T{ 0
T{ MAX-INT
T{ MAX-INT
F.6.1.0490 <#

See F.6.1.0030 #, F.6.1.0050 #S, F.6.1.1670 HOLD, F.6.1.2210 SIGN.

GDX

—> 1T
}T

<TRUE>
<TRUE>
<TRUE>
<TRUE>
<TRUE>
<TRUE>
<TRUE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>
<FALSE>

GDX 234

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

4

—>

}T

testsuite

291

F. Test Suite Forth 200x / 18.1
F.6.1.0530 =
T{ 0 = -> <TRUE> }T
T{ 1 1 = -> <TRUE> }T
T{ -1 -1 = -> <TRUE> }T
T{ 1 0 = —> <FALSE> }T
T{ -1 0 = —-> <FALSE> }T
T{ 0 1 = —-> <FALSE> }T
T{ 0 -1 = —> <FALSE> }T
F.6.1.0540 >
T{ 0 1l > —> <FALSE> }T
T{ 1 2 > —-> <FALSE> }T
T{ -1 0 > —> <FALSE> }T
T{ -1 1l > —> <FALSE> }T
T{ MIN-INT 0 > —> <FALSE> }T
T{ MIN-INT MAX-INT > -> <FALSE> }T
T{ 0 MAX-INT > —-> <FALSE> }T
T{ 0 0 > —> <FALSE> }T
T 1 1l > —-> <FALSE> }T
T{ 1 0 > —> <TRUE> }T
T{ 2 1 > -> <TRUE> }T
T{ 0 -1 > —> <TRUE> }T
T{ 1 -1 > —> <TRUE> 1T
T{ 0 MIN-INT > —> <TRUE> }T
T{ MAX-INT MIN-INT > -> <TRUE> }T
T{ MAX-INT 0 > —> <TRUE> }T
F.6.1.0550 >BODY
T{ CREATE CRO —> }T

T{ ’ CRO >BODY -> HERE }T

F.6.1.0560 >IN

VARIABLE S
RESCAN?

CANS
-1 SCANS +!

T{ 2 SCANS !

345 RES
—-> 345 345

GS2 5 SCANS ! S" 123 RESCAN?" EVALUATE
T{ GS2 -> 123 123 123 123 123 }T

CAN?
}T

SCANS @ IF 0 >IN

\ These tests must start on a new line

DECIMAL

T{ 123456 DEPTH OVER 9 < 35 AND + 3 + >IN
—-> 123456 23456 3456 456 56 6 }T

THEN

4

14

292

testsuite

Forth 200x / 18.1 F. Test Suite

T{ 14145 8115 ?DUP 0= 34 AND >IN +! TUCK MOD 14 >IN ! GCD calculation
-> 15 }T

F.6.1.0570 >NUMBER

CREATE GN-BUF 0 C,
GN-STRING GN-BUF 1 ;
GN-CONSUMED GN-BUF CHAR+ 0 ;
GN’ [CHAR] ' WORD CHAR+ CQ@ GN-BUF C! GN-STRING ;

T{ 0 0 GN’ 0’ >NUMBER -> 0 0 GN-CONSUMED }T
T{ 0 0 GN’ 1’ >NUMBER -> 1 0 GN-CONSUMED }T
T{ 1 0 GN/ 1’ >NUMBER -> BASE @ 1+ 0 GN-CONSUMED }T
\ FOLLOWING SHOULD FAIL TO CONVERT

T{ 0 0 GN’ -’ >NUMBER -> 0 0 GN-STRING }T
T{ 0 0 GN’ +’ >NUMBER —> 0 0 GN-STRING }T
T{ 0 0 GN’ .’ >NUMBER -> 0 0 GN-STRING }T

>NUMBER-BASED
BASE @ >R BASE ! >NUMBER R> BASE ! ;

T{ 0 0 GN’ 2’ 10 >NUMBER-BASED -> 2 0 GN-CONSUMED }T

T{ 0 0 GN" 2’ 2 >NUMBER-BASED -> 0 0 GN-STRING }T

T{ 0 0 GN" F' 10 >NUMBER-BASED -> F 0 GN-CONSUMED }T

T{ 0 0 GN" G’ 10 >NUMBER-BASED -> 0 0 GN-STRING }T

T{ 0 0 GN’ G’ MAX-BASE >NUMBER-BASED -> 10 0 GN-CONSUMED }T

T{ 0 0 GN’ Z’ MAX-BASE >NUMBER-BASED —-> 23 0 GN-CONSUMED }T
GN1 (UD BASE -- UD’ LEN)

\ UD SHOULD EQUAL UD’ AND LEN SHOULD BE ZERO.
BASE @ >R BASE !

<# #s i#>
0 0 2SWAP >NUMBER SWAP DROP \ RETURN LENGTH ONLY
R> BASE ! ;
T { 0 0 2 GN1 —-> 0 00 }T
T{ MAX-UINT 0 2 GN1 -> MAX-UINT 00 }T
T{ MAX-UINT DUP 2 GN1 -> MAX-UINT DUP 0 }T
T{ 0 0 MAX-BASE GN1 -> 0 0 0T
T{ MAX-UINT 0 MAX-BASE GN1 -> MAX-UINT 00 }T
T{ MAX-UINT DUP MAX-BASE GN1 -> MAX-UINT DUP 0 }T
F.6.1.0580 >R
T{ : GRL >R R> ; —> T
T{ : GR2 >R RQ@ R> DROP ; —-> }T

T{ 123 GR1 —> 123 }T
T{ 123 GR2 —> 123 }T
T{ 1S GR1l -> 1S }T (Return stack holds cells)

testsuite 293

F. Test Suite Forth 200x / 18.1

F.6.1.0630 ?DUP
T{ -1 ?DUP —> -1 -1 }T
T{ 0 ?DUP -> O }T
T{ 1 ?DUP -> 1 1 }T

F.6.1.0650 @
See F.6.1.0150 , .

F.6.1.0690 ABS
T{ 0 ABS —> 0 }T
T{ 1 ABS —> 1 31T
T{ -1 ABS —> 1 }T

T{ MIN-INT ABS -> MID-UINT+1 }T

F.6.1.0695 ACCEPT
CREATE ABUF 80 CHARS ALLOT

ACCEPT-TEST

CR ." PLEASE TYPE UP TO 80 CHARACTERS:" CR
ABUF 80 ACCEPT
CR ." RECEIVED: " [CHAR] " EMIT

ABUF SWAP TYPE [CHAR] " EMIT CR
’
T{ ACCEPT-TEST -> }T

F.6.1.0705 ALIGN

ALIGN 1 ALLOT HERE ALIGN HERE 3 CELLS ALLOT
CONSTANT A-ADDR CONSTANT UA-ADDR
T{ UA-ADDR ALIGNED -> A-ADDR }T

T{ 1 A-ADDR C! A-ADDR cR —> 13T
T{ 1234 A-ADDR ! A-ADDR @ -> 1234 }T
T{ 123 456 A-ADDR 2! A-ADDR 2@ -> 123 456 }T
T{ 2 A-ADDR CHAR+ C! A-ADDR CHAR+ C@ —> 2 31T
T{ 3 A-ADDR CELL+ C! A-ADDR CELL+ C@ —> 3T
T{ 1234 A-ADDR CELL+ ! A-ADDR CELL+ @ —> 1234 }T
T{ 123 456 A-ADDR CELL+ 2! A-ADDR CELL+ 2@ -> 123 456 }T

F.6.1.0710 ALLOT

HERE 1 ALLOT

HERE

CONSTANT 2NDA

CONSTANT 1STA

T{ 1STA 2NDA U< -> <TRUE> }T \ HERE MUST GROW WITH ALLOT
T{ 1STA 1+ —> 2NDA }T \ ... BY ONE ADDRESS UNIT
(MISSING TEST: NEGATIVE ALLOT)

294 testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.0720 AND

T{
T{
T{
TH{

T{
T{

TH{
T{
T{
T{

R P O O

o

0s
0s
1s
1s

0 AND —> O
1 AND —> 0
0 AND -> O
1 AND —> 1

31T
3T
3T
}T

INVERT 1 AND —> 1 }T
INVERT 1 AND -> 0 }T

0S AND ->
1S AND —>
0S AND —>
1S AND —>

F.6.1.0750 BASE

GN2 \ (—- 16

0sS }T
0S }T
0S T
1s T

10)

BASE @ >R HEX BASE @ DECIMAL BASE @ R> BASE ! ;
T{ GN2 -> 10 A }T

F.6.1.0760 BEGIN

See F.6.1.2430 WHILE, F.6.1.2390 UNTIL.

F.6.1.0770 BL
T{ BL -> 20 }T

F.6.1.0850 cC!
See F.6.1.0860 C, .

F.6.1.0860 cC,

HERE 1 C,
HERE 2 C,
CONSTANT 2NDC
CONSTANT 1STC

1STC 2NDC U< -> <TRUE> }T\ HERE MUST GROW WITH ALLOT

T{

T{ 1STC CHAR+ —>
T{ 1STC 1 CHARS + —>
T{ 1STC CQ 2NDC CQRQ ->
T{ 3 1STC C! —>
T{ 1STC CQ 2NDC CQ ->
T{ 4 2NDC C! —>
T{ 1STC CQ 2NDC CQRQ —->

F.6.1.0870 cq@

See F.6.1.0860 C, .

F.6.1.0880 CELL+
See F.6.1.0150 , .

2NDC
2NDC
12

}T\ ... BY ONE CHAR
}T
}T
}T
}T
}T
}T

testsuite

295

F. Test Suite Forth 200x / 18.1

F.6.1.0890 CELLS

BITS (X —— U)
0 SWAP BEGIN DUP WHILE
DUP MSB AND IF >R 1+ R> THEN 2%

REPEAT DROP ;

(CELLS >= 1 AU, INTEGRAL MULTIPLE OF CHAR SIZE, >= 16 BITS)

T{ 1 CELLS 1 < -> <FALSE> }T
T{ 1 CELLS 1 CHARS MOD -> 0 }T
T{ 1S BITS 10 < -> <FALSE> }T

F.6.1.0895 CHAR

T{ CHAR X -> 58 }T
T{ CHAR HELLO -> 48 }T

F.6.1.0897 CHAR+
T{ 0 CHAR+ 1 = —> <TRUE> }T

See F.6.1.0860 C, for additional test.

F.6.1.0898 CHARS
(CHARACTERS >= 1 AU, <= SIZE OF CELL, >= 8 BITS)

T{ 1 CHARS 1 < -> <FALSE> }T
T{ 1 CHARS 1 CELLS > -> <FALSE> }T
T{ 1 CHARS 1 = -> <TRUE> }T

(TBD: HOW TO FIND NUMBER OF BITS?)

F.6.1.0950 CONSTANT
T{ 123 CONSTANT X123 -> }T
T{ X123 -> 123 }T

T{ : EQU CONSTANT ; -> }T
T{ X123 EQU Y123 -> }T
T{ Y123 -> 123 }T
F.6.1.0980 COUNT
T{ GT1STRING COUNT -> GT1STRING CHAR+ 3 }T

F.6.1.0990 CR
See F.6.1.1320 EMIT.

F.6.1.1000 CREATE
See F.6.1.0550 >BODY and F.6.1.1250 DOES>.

F.6.1.1170 DECIMAL
See F.6.1.0750 BASE.

296 testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.1200 DEPTH

T{ 0 1 DEPTH -> 0 1 2 }T

T{ 0 DEPTH -> 0 1 }T

T{ DEPTH -> 0 }T
F.6.1.1240 DO

See F.6.1.1800 LOOP, F.6.1.0140 +1.00P, F.6.1.1730 J, F.6.1.1760 LEAVE, F.6.1.2380 UNLOOP.
F.6.1.1250 DOES>

T{
TH{
T{
T{
T{
TH{
TH{
T{
T{
T{

TH{
T{
TH{
TH{
T{

DOES1 DOES> @ 1 + ; —-> }T
DOES2 DOES> @ 2 + ; -> }T
CREATE CR1 ->)T
CR1 -> HERE }T
1, > }T

CR1 @ -> 1 }T
DOES1 -> }T
CR1 -> 2 }T
DOES2 -> }T
CR1 -> 3 }T
WEIRD: CREATE DOES> 1 + DOES> 2 + ; -> }T

WEIRD: Wl -> }T
' W1 >BODY —-> HERE }T
Wl -> HERE 1 + }T
Wl -> HERE 2 + }T

F.6.1.1260 DROP

TH{
T{

1 2 DROP -> 1 }T
0 DROP -> }T

F.6.1.1290 DUP

TH{

1 pup —> 1 1 }T

F.6.1.1310 ELSE
See F.6.1.1700 IF.

F.6.1.1320 EMIT

OUTPUT-TEST

" YOU SHOULD SEE THE STANDARD GRAPHIC CHARACTERS:" CR

41 BL DO I EMIT LOOP CR
61 41 DO I EMIT LOOP CR
7F 61 DO I EMIT LOOP CR

." YOU SHOULD SEE 0-9 SEPARATED BY A SPACE:" CR
9 1+ 0 DO I . LOOP CR

." YOU SHOULD SEE 0-9 (WITH NO SPACES):" CR
[CHAR] 9 1+ [CHAR] 0 DO I 0 SPACES EMIT LOOP CR

." YOU SHOULD SEE A-G SEPARATED BY A SPACE:" CR

testsuite

297

F. Test Suite

Forth 200x / 18.1

T{

[CHAR] G 1+ [CHAR] A DO I EMIT SPACE LOOP CR

." YOU SHOULD SEE 0-5 SEPARATED BY TWO SPACES:" CR
5 1+ 0 DO I [CHAR] O + EMIT 2 SPACES LOOP CR

." YOU SHOULD SEE TWO SEPARATE LINES:" CR
S" LINE 1" TYPE CR S" LINE 2" TYPE CR

." YOU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS:" CR

. SIGNED: " MIN-INT . MAX-INT . CR
." UNSIGNED: " 0 U. MAX-UINT U. CR

OUTPUT-TEST -> }T

F.6.1.1345 ENVIRONMENT?

\ should be the same for any query starting with X:

T{
T{

S" X:deferred" ENVIRONMENT? DUP 0= XOR INVERT ->
S" X:notfound" ENVIRONMENT? DUP 0= XOR INVERT ->

F.6.1.1360 EVALUATE

T{
T{
T{
T

T{
T{
T{
T{

GEl S" 123" ; IMMEDIATE
GE2 S" 123 1+" ; IMMEDIATE
GE3 S" : GE4 345 ;" ;

GE5 EVALUATE ; IMMEDIATE

GEl EVALUATE -> 123 }T(TEST EVALUATE IN INTERP.
GE2 EVALUATE -> 124 }T
GE3 EVALUATE —> }T
GE4 -> 345 3T

GE6 GEl GE5 ; -> }T(TEST EVALUATE IN COMPILE
GE6 —-> 123 }T

GE7 GE2 GE5 ; -> T
GE7 -> 124 }T

See F.9.3.6 for additional test.

F.6.1.1370 EXECUTE
See F.6.1.0070 * and F.6.1.2510 [’].

F.6.1.1380 EXIT
See F.6.1.2380 UNLOOP.

F.6.1.1540 FILL

T{
T{

T{
T{

FBUF 0 20 FILL -> }T
SEEBUF -> 00 00 00 }T

FBUF 1 20 FILL -> }T
SEEBUF -> 20 00 00 T

<TRUE>

}T

<FALSE> }T

STATE

STATE

)

)

298

testsuite

Forth 200x / 18.1

F. Test Suite

T{ FBUF 3 20 FILL —>
-> 20 20 20 }T

T{

SEEBUF

F.6.1.1550 FIND

HERE 3 C,
HERE 3 C,
T{ GT1STRING FIND ->
T{ GT2STRING FIND —->
(HOW TO SEARCH FOR NON-EXISTENT WORD?

CHAR G C, CHAR T
CHAR G C, CHAR T

F.6.1.1561 FM/MOD

T{
T{
T
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T
T{
T{
T{
T{
T{
T{
T{
T
T{
T{
T{
T{
T
T{
T{
T{

MAX-INT
MIN-INT
MAX-INT
MIN-INT
1s 1

1

N RPN R

S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D
S>D

MIN-INT
MIN-INT
MIN-INT
MIN-INT
MAX-INT
MAX-INT
MAX—-INT

2 MAX-INT

MIN-INT
MIN-INT
MIN-INT
MAX-INT

MIN-INT
MAX-INT
MAX-INT
MAX-INT

Mx
Mx
Mx
M*
Mx
Mx
Mx
Mx
M*
Mx*
Mx
Mx

4

14

}T

GT1 -1
GT2 1

MAX-INT
MIN-INT
4
1
MIN-INT
2
MIN-INT
1
MAX-INT
2
MAX-INT
MIN-INT
MIN-INT
MAX-INT
MAX-INT

}T
}T

FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD
FM/MOD

)

O O O OO OO OO0 WOoOoookrHIN

P O O O O OO0 O0OOoOOoO oo Oo

N

| [
R O NREDNREO

|
N

W w DR RP DN

\S]

MAX-INT
MIN-INT
1
1
MAX-INT
MIN-INT
1
MIN-INT
2
MAX-INT
1
MAX-INT
2
MIN-INT
MAX-INT
MIN-INT
MAX-INT

C, CHAR 1 C, CONSTANT GT1STRING
C, CHAR 2 C, CONSTANT GT2STRING

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

testsuite

299

F. Test Suite Forth 200x / 18.1

F.6.1.1650 HERE
See F.6.1.0150 , , F.6.1.0710 ALLOT, F.6.1.0860 C, .

F.6.1.1670 HOLD

GP1 <# 41 HOLD 42 HOLD 0 O #> S" BA" S= ;
T{ GP1 —-> <TRUE> }T

F.6.1.1680 I
See F.6.1.1800 LOOP, F.6.1.0140 +L.0OP, F.6.1.1730 J, F.6.1.1760 LEAVE, F.6.1.2380 UNLOOP.

F.6.1.1700 IF

T{ : GI1 IF 123 THEN ; -> }T

T{ : GI2 IF 123 ELSE 234 THEN ; -> }T
T{ 0 GIl1 -> }T

T{ 1 GI1 -> 123 }T

T{ -1 GI1 -> 123 }T

T{ 0 GI2 -> 234 }T

T{ 1 GI2 -> 123 }T

T{ -1 GI1 -> 123 }T

\ Multiple ELSEs in an IF statement

: melse IF 1 ELSE 2 ELSE 3 ELSE 4 ELSE 5 THEN ;
T{ <FALSE> melse —-> 2 4 }T

T{ <TRUE> melse -> 1 3 5 }T

F.6.1.1710 IMMEDIATE

T{ 123 CONSTANT iwl IMMEDIATE iwl —-> 123 }T
T{ : iw2 iwl LITERAL ; iw2 -> 123 }T

T{ VARIABLE iw3 IMMEDIATE 234 iw3 ! iw3 @ -> 234 }T
T{ : iw4 iw3 [@] LITERAL ; iw4 —-> 234 }T

T{ :NONAME [345] iw3 [!] ; DROP iw3 @ —-> 345 }T
T{ CREATE iw5 456 , IMMEDIATE -> }T
T{ :NONAME iw5 [@ iw3 !] ; DROP iw3 @ -> 456 }T

T{ : iw6 CREATE , IMMEDIATE DOES> @ 1+ ; -> T
T{ 111 iw6 iw7 iw7 -> 112 }T
T{ : iw8 iw7 LITERAL 1+ ; iw8 —> 113 }T

T{ : iw9 CREATE , DOES> @ 2 + IMMEDIATE ; -> }T

: find-iw BL WORD FIND NIP ;

T{ 222 iw9 iwl0 find-iw iwl0 -> -1 }T \ iwlO is not immediate
T{ iwl0O find-iw iwlO -> 224 1 }T \ iw10 becomes immediate

See F.6.1.2510 [’], F.6.1.2033 POSTPONE, F.6.1.2250 STATE, F.6.1.2165 5".

300 testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.1720 INVERT
T{ 0S INVERT -> 1S }T
T{ 1S INVERT -> 0S }T
T{ 0 INVERT -> -1 }T

4

1

->
23

F.6.1.1730 J
T{ : Gb3 DO 1 0 DO J LOOP LOOP
T{ 4 1 GD3 —>
T{ 2 -1 GD3 -> -1 0 1

}T

}T
3T

T{ MID-UINT+1 MID-UINT GD3 -> MID-UINT }T

T{ : Gb4 DO 1 0 DO J LOOP -1 +LOOP ;

T{ 1
T{ -1

4 Gh4 —> 4 3 21
2 Gh4 -> 2 1 0 -1

—->

}T

}T
3T

T{ MID-UINT MID-UINT+1 GD4 -> MID-UINT+1 MID-UINT }T

F.6.1.1760 LEAVE
T{ : GD5 123 SWAP 0 DO

I 4 > IF DROP 234 LEAVE THEN

LOOP ; -> T
T{ 1 GD5 —> 123 }T
T{ 5 GD5 —> 123 }T
T{ 6 GD5 —> 234 }T

F.6.1.1780 LITERAL
T{ : GT3 GT2 LITERAL ; -> }T
T{ GT3 -> " GT1 }T

F.6.1.1800 1.00P

T{ : GD1 DO I LOOP ; -> }T

T{ 4 1 GD1 —>
T{ 2 -1 GD1 —>
T{ MID-UINT+1 MID-UINT GD1 —->

F.6.1.1805 LSHIFT

T{ 1 0 LSHIFT -> 1 1T
T{ 1 1 LSHIFT —> 2 T
T{ 1 2 LSHIFT —> 4 }T
T{ 1 F LSHIFT -> 8000 }T
T{ 1S 1 LSHIFT 1 XOR —-> 1S }T
T{ MSB 1 LSHIFT -> 0 1T
F.6.1.1810 Mx

T{ 0 0 Mx —>
T{ 0 1 Mx —>
T{ 1 0 Mx —>
T{ 1 2 Mx —>
T{ 2 1 Mx —>

1
-1

23
01

3T
}T

MID-UINT }T

NN O OO

S>D
S>D
S>D
S>D
S>D

}T
}T
}T
1T
1T

\ BIGGEST GUARANTEED SHIFT

testsuite

301

F. Test Suite Forth 200x / 18.1
T{ 3 3 Mx —> 9 S>D }T
T{ -3 3 Mx —> -9 S>D }T
T{ 3 -3 Mx —> -9 8>D }T
T{ -3 -3 Mx —> 9 S>D }T
T { 0 MIN-INT M* -—> 0 S>D }T
T{ 1 MIN-INT Mx —-> MIN-INT S>D }T
T{ 2 MIN-INT Mx —> 0 1S 1T
T{ 0 MAX-INT M#%x —-> 0 S>D }T
T{ 1 MAX-INT M* —-> MAX-INT S>D }T
T{ 2 MAX-INT Mx —-> MAX-INT 1 LSHIFT 0 }T
T{ MIN-INT MIN-INT Mx -> 0 MSB 1 RSHIFT 1T
T{ MAX-INT MIN-INT Mx —-> MSB MSB 2/ 1T
T{ MAX-INT MAX-INT Mx -> 1 MSB 2/ INVERT 1T
F.6.1.1870 MAX
T{ 0 1 MAX —> 13T
T{ 1 2 MAX -> 2 }T
T{ -1 0 MAX —> 0 1T
T{ -1 1 MAX —> 11T
T{ MIN-INT 0 MAX —> 01T
T{ MIN-INT MAX-INT MAX -> MAX-INT }T
T{ 0 MAX-INT MAX -> MAX-INT }T
T{ 0 0 MAX —> 0 1T
T{ 1 1 MAX —> 11T
T{ 1 0 MAX —> 11T
T{ 2 1 MAX —> 2 1T
T{ 0 -1 MAX —> 0 1T
T{ 1 -1 MAX —> 11T
T{ 0 MIN-INT MAX -> 0)T
T{ MAX-INT MIN-INT MAX -> MAX-INT }T
T{ MAX-INT 0 MAX -> MAX-INT }T
F.6.1.1880 MIN
T{ 0 1 MIN —> 0 }T
T{ 1 2 MIN —> 11T
T{ -1 0 MIN -> -1 }7T
T{ -1 1 MIN —> -1 }T
T{ MIN-INT 0 MIN -> MIN-INT }T
T{ MIN-INT MAX-INT MIN -> MIN-INT }T
T{ 0 MAX-INT MIN —> 01T
T{ 0 0 MIN —> 0 }T
T{ 1 1 MIN —> 1 }T
T{ 1 0 MIN —> 0 1T
T{ 2 1 MIN —> 11T
T{ 0 -1 MIN —> -1 }T

302

testsuite

Forth 200x / 18.1 F. Test Suite
T{ 1 -1 MIN —> -1 }T
T{ 0 MIN-INT MIN —-> MIN-INT }T
T{ MAX-INT MIN-INT MIN -> MIN-INT }T
T{ MAX-INT 0 MIN —> 01T

F.6.1.1890 MOD
IFFLOORED TMOD T/MOD DROP ;
IFSYM TMOD T/MOD DROP ;
T{ 0 1 MOD —> 0 1 TMOD }T
T{ 1 1 MOD —> 1 1 TMOD }T
T{ 2 1 MOD —> 2 1 TMOD }T
T{ -1 1 MOD —> -1 1 TMOD }T
T{ -2 1 MOD —> -2 1 TMOD }T
T{ 0 -1 MOD -> 0 -1 TMOD }T
T{ 1 -1 MOD -> 1 -1 TMOD }T
T{ 2 -1 MOD —> 2 -1 TMOD }T
T{ -1 -1 MOD —> -1 -1 TMOD }T
T{ -2 -1 MOD —> -2 -1 TMOD }T
T{ 2 2 MOD —> 2 2 TMOD }T
T{ -1 -1 MOD —> -1 -1 TMOD }T
T{ -2 -2 MOD —> -2 -2 TMOD }T
T{ 7 3 MOD —> 7 3 TMOD }T
T{ 7 -3 MOD —> 7 -3 TMOD }T
T{ -7 3 MOD —> -7 3 TMOD }T
T{ -7 -3 MOD —> -7 -3 TMOD }T
T{ MAX-INT 1 MOD —> MAX-INT 1 TMOD }T
T{ MIN-INT 1 MOD —-> MIN-INT 1 TMOD }T
T{ MAX-INT MAX-INT MOD -> MAX-INT MAX-INT TMOD }T
T{ MIN-INT MIN-INT MOD -> MIN-INT MIN-INT TMOD }T

F.6.1.1900 MOVE
T{ FBUF FBUF 3 CHARS MOVE -> }T \ BIZARRE SPECIAL CASE
T{ SEEBUF -> 20 20 20 }T
T{ SBUF FBUF 0 CHARS MOVE -> }T
T{ SEEBUF -> 20 20 20 }T
T{ SBUF FBUF 1 CHARS MOVE -> }T
T{ SEEBUF -> 12 20 20 }T
T{ SBUF FBUF 3 CHARS MOVE -> }T
T{ SEEBUF -> 12 34 56 }T
T{ FBUF FBUF CHAR+ 2 CHARS MOVE -> }T
T{ SEEBUF -> 12 12 34 }T
T{ FBUF CHAR+ FBUF 2 CHARS MOVE —-> }T

testsuite 303

F. Test Suite

Forth 200x / 18.1

T{ SEEBUF -> 12 34 34 }T

F.6.1.1910 NEGATE

T{ O NEGATE -> 0 }T
T{ 1 NEGATE -> -1 }T
T{ -1 NEGATE -> 1 }T
T{ 2 NEGATE -> -2 }T
T{ -2 NEGATE -> 2 }T

F.6.1.1980 OR

T{ 0S 0S OR —> 0S }T
T{ 0S 1S OR —> 1S }T
T{ 1S 0S OR -> 1S }T
T{ 1S 1S OR -> 1S }T

F.6.1.1990 OVER

T{ 1 2 OVER —> 1 2 1 }T

F.6.1.2033 POSTPONE

T{ : GT4 POSTPONE GTl ; IMMEDIATE —-> }T
T{ : GT5 GT4 ; -> }T
T{ GT5 —-> 123 }T

T{ : GT6 345 ; IMMEDIATE -> }T
T{ : GT7 POSTPONE GT6 ; —-> }T
T{ GT7 -> 345 }T

F.6.1.2060 R>

See F.6.1.0580 >R.

F.6.1.2070 R@

See F.6.1.0580 >R.

F.6.1.2120 RECURSE

T{ : GI6 (N —- 0,1,..N)
DUP IF DUP >R 1- RECURSE R> THEN ; ->
T{ 0 GI6 -—> 0 }T
T{ 1 GI6 —> 0 1 }T
T{ 2 GI6 —> 0 2 1T
T{ 3 GI6 —> 0 1 2 }T
T{ 4 GI6o —> 0 1 2 4 1T
DECIMAL
T{ :NONAME (n —— 0, 1, .., n)

DUP IF DUP >R 1- RECURSE R> THEN
;
CONSTANT rnl -> }T
T{ 0 rnl EXECUTE -> 0 }T
T{ 4 rnl EXECUTE -> 0 1 2 3 4 }T

}T

304

testsuite

Forth 200x / 18.1 F. Test Suite

:NONAME (n--nl)
1-DUP
CASE O OF EXIT ENDOF
1 OF 11 SWAP RECURSE ENDOF
2 OF 22 SWAP RECURSE ENDOF
3 OF 33 SWAP RECURSE ENDOF
DROP ABS RECURSE EXIT
ENDCASE
; CONSTANT rn2

1 rn2 EXECUTE -> 0 }T

T{ 2 rn2 EXECUTE -> 11 0 }T
4 rn2 EXECUTE -> 33 22 11 0 }T
5

T{ 25 rn2 EXECUTE -> 33 22 11 0 }T

F.6.1.2140 REPEAT
See F.6.1.2430 WHILE.

F.6.1.2160 ROT
T{ 1 2 3 ROT -> 2 3 1 }T

F.6.1.2162 RSHIFT

T{ 1 0 RSHIFT -> 1 }T
T{ 1 1 RSHIFT -> 0 }T
T{ 2 1 RSHIFT -> 1 }T
T{ 4 2 RSHIFT -> 1 }T
T{ 8000 F RSHIFT -> 1 }T \ Biggest
T{ MSB 1 RSHIFT MSB AND -> 0 T \ RSHIFT zero fills MSBs
T{ MSB 1 RSHIFT 2% -> MSB }T
F.6.1.2165 s"
T{ : GC4 S" XY" ; —> }T

T{ GC4 SWAP DROP -> 2 }T
T{ GC4 DROP DUP C@ SWAP CHAR+ CQ@ -> 58 59 }T

: GC5 s" A String"2DROP ; \ There is no space between the " and 2DROP
T{ GC5 —> }T

T{ S" A String"2DROP -> }T \ There is no space between the " and 2DROP edls

F.6.1.2170 s>D

T{ 0 S>D —> 0 0 }T
T{ 1 S>D —> 1 0 }T
T{ 2 S>D —> 2 0 }T
T{ -1 s>D —> -1 -1)T
T{ -2 8>D —> -2 -1 }T

T{ MIN-INT S>D -> MIN-INT -1 }T
T{ MAX-INT S>D -> MAX-INT 0 }T

testsuite 305

F. Test Suite

Forth 200x / 18.1

F.6.1.2210 SIGN
GP2 <# -1 SIGN 0 SIGN -1 SIGN 0 0 #> s"

F.6.1.2214 SM/REM

F.6.1.2216 SOURCE
S" SOURCE"

T{ GP2

T{
T{
T{
T{
TH{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
T{
TH{
T{
T{
T{
T{
T{
T{
T{
TH{
T{

-> <TRUE> }T

0
1
2
-1
-2

MAX—-INT
MIN-INT
MAX-INT
MIN-INT

1s
2
2
2
2

MIN-INT
MIN-INT
MIN-INT
MAX-INT

Gsl

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

S>D

1
MIN-INT
MIN-INT
MAX—-INT
MAX—-INT
MIN-INT
MAX-INT
MAX—-INT
MAX—-INT

Mx
Mx
Mx
M*
Mx*
Mx
Mx
Mx

MAX-INT
MIN-INT

4

2
MIN-INT

2
MAX-INT
MIN-INT
MIN-INT
MAX-INT
MAX-INT

T{ GS1 -> <TRUE> <TRUE> }T

GS4 SOURCE >IN !
T{ GS4 123 456

->

}T

F.6.1.2220 SPACE
See F.6.1.1320 EMIT.

DROP ;

SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM
SM/REM

O O O O O OO0 WOOOORrRPRPRPEPE OOOOOOOOOOOOOoO

2DUP EVALUATE >R SWAP >R

n S= ;

MAX-INT
MIN-INT
1
1
MAX-INT
MIN-INT
2
MAX-INT
2
MIN-INT
MAX-INT
MIN-INT
MAX-INT

R> R> =

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

4

306

testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.2230 SPACES
See F.6.1.1320 EMIT.

F.6.1.2250 STATE
T{ : GT8 STATE @ ; IMMEDIATE ->
T{ GT8 —> 0 }T
T{ : GT9 GT8 LITERAL ; -> }T
T{ GT9 0= -> <FALSE> }T
F.6.1.2260 SwAP
T{ 1 2 SWAP -> 2 1 }T

F.6.1.2270 THEN
See F.6.1.1700 IF.

F.6.1.2310 TYPE
See F.6.1.1320 EMIT.

F.6.1.2320 U.
See F.6.1.1320 EMIT.

F.6.1.2340 U<
T{
TH{

T{

}T

0 1 U< -> <TRUE> }T
1 2 U< —> <TRUE> }T
T{ 0 MID-UINT U< -> <TRUE> }T
0 MAX-UINT U< —-> <TRUE> }T

T{ MID-UINT MAX-UINT U< -> <TRUE> }T

T{ 0 0 U< —> <FALSE> }T
T{ 1 1 U< -> <FALSE> }T
T{ 1 0 U< -> <FALSE> }T
T{ 2 1 U< -> <FALSE> }T
T{ MID-UINT 0 U< —-> <FALSE> }T
T{ MAX-UINT 0

U< —-> <FALSE> }T

T{ MAX-UINT MID-UINT U< —-> <FALSE> }T

F.6.1.2360 UM=*

T{ 0 O UMx —> 0 0 }T
T{ O 1 UMx —> 0 0 }T
T{ 1 0 UMx —> 0 0 }T
T{ 1 2 UMx —> 2 0 }T
T{ 2 1 UMx —> 2 0 }T
T{ 3 3 UMx —> 9 0 }T

T{ MID-UINT+1 1 RSHIFT 2 UM —>

T{ MID-UINT+1 2 UM* —>
T{ MID-UINT+1 4 UMx —>
T{ 1S 2 UMx —>

T{ MAX-UINT MAX-UINT UM* —->

MID-UINT+1
0
0
1S 1 LSHIFT

0
1
2
1

1 1 INVERT

}T
}T
}T
}T
}T

testsuite

307

F. Test Suite

Forth 200x / 18.1

F.6.1.2370 UM/MOD

T{
TH{
T{
T
TH{
T{
T{

0 0 1 uM/MOD -> 0 0
1 0 1 UM/MOD -> O 1
1 0 2 UM/MOD -> 1 0
3 0 2 UM/MOD —> 1 1
MAX-UINT 2 UMx 2 UM/MOD -> (0 MAX-UINT
MAX-UINT 2 UM% MAX-UINT UM/MOD -> 0 2
MAX-UINT MAX-UINT UM% MAX-UINT UM/MOD -> 0 MAX-UINT

F.6.1.2380 UNLOOP

T{

T{
T{
T{

1
2
3

GD6 (PAT:

0 SWAP
I 1+

I J+ 3 =1IF I UNLOOP I UNLOOP EXIT THEN 1+

LOOP
LOOP ;
GD6 —>
GD6 —>
GD6 —>

F.6.1.2390 UNTIL
GI4 BEGIN DUP 1+ DUP 5 > UNTIL ; -> }T

T

T{ 3 GI4 —>
T{ 5 GI4 —->

T{

6

GI4 —>

0 DO
0 DO

-> }T

1)7

3 1T

4 1 2 }T

3456 }T
56 }T
6 7 }T

F.6.1.2410 VARIABLE

T{ VARIABLE V1 —> }T
T{ 123 v1 ! —> }T
T{ V1l @ -> 123 }T

F.6.1.2430 WHILE
GI3 BEGIN DUP 5 < WHILE DUP 1+ REPEAT ; ->

T{
T
T{
T{
TH{

T{

T{
T{
T{
T{
TH{

o U1 O -

g w N

GI3 —>
GI3 —>
GI3 —>
GI3 —>

012345 }T
4 5 }T
5 }T
6 }T

GI5 BEGIN DUP 2 > WHILE
DUP 5 < WHILE DUP 1+ REPEAT
123 ELSE 345 THEN ; -> }T

GI5 —>
GI5 —>
GI5 —>
GI5 —>
GI5 —>

345 }T

345 }T

4 5 123 }T
5 123 T
123 }T

g w N

}T

}T
}T
}T
}T
}T
}T
}T

{0 0},{0 0}{1 O}{1 1},{0 O}{1 O}{1 1}{2 0}{2 1}{2 2})

308

testsuite

Forth 200x / 18.1

F. Test Suite

F.6.1.2450 WORD
GS3 WORD COUNT SWAP CQ ;
T{ BL GS3 HELLO -> 5 CHAR H }T
T{ CHAR " GS3 GOODBYE" -> 7 CHAR G }T
T{ BL GS3
DROP -> 0 }T

F.6.1.2490 XOR
T{ 0S 0S XOR —-> 0S }T
T{ 0S 1S XOR -> 1S }T
T{ 1S 0S XOR —-> 1S }T
T{ 1S 1S XOR —-> 0S }T

F.6.1.2500 [
T{ : GC3 [GC1] LITERAL ; -> }T
T{ GC3 -> 58 }T

F.6.1.2510 [']

T{ : GT2 ['] GTl ; IMMEDIATE -> }T
T{ GT2 EXECUTE -> 123 }T

F.6.1.2520 [CHAR]
T{ : GCl [CHAR] X ; —> 1T
T{ : GC2 [CHAR] HELLO ; -> }T
T{ GCl1 -> 58 }T
T{ GC2 —> 48 }T

F.6.1.2540]
See F.6.1.2500 [.

F.6.2.0455 :NONAME
VARIABLE nnl
VARIABLE nn2
T{ :NONAME 1234 ; nnl ! -> }T
T{ :NONAME 9876 ; nn2 ! -> }T
T{ nnl @ EXECUTE -> 1234 }T
T{ nn2 @ EXECUTE -> 9876 }T

F.6.2.0620 2DO
DECIMAL

gd ?DO I LOOP ;

T{ 789 789 gd -> }T

T{ -9876 -9876 gqd -> }T

T { 5 0gd -> 012 34 }T

gdl ?DO I 10 +LOOP ;
T{ 50 1 gdl -> 1 11 21 31 41 }T
T{ 50 0 gdl -> 0 10 20 30 40 }T

\ Blank lines return zero-length strings

testsuite

309

F. Test Suite

Forth 200x / 18.1

gd2 ?DO I 3 > IF LEAVE ELSE I THEN LOOP

T{ 5 -1 gd2 -> -1 01 2 3 }T

qd3 ?DO I 1 +LOOP ;
T{ 4 4 gqd3 ->)T
T{ 4 1 qd3 -> 12 3 }T
T{ 2 -1 qd3 -> -1 0 1 }T

gqd4 ?DO I -1 +LOOP ;
T{ 4 4 gd4 -> }T
T{ 1 4 qgdd —> 4 3 2 1 }T
T{ -1 2 gqd4 -> 2 1 0 -1 }T

qd5 ?DO0 I -10 +LOOP ;
T{ 1 50 gqd5 —-> 50 40 30 20 10 }T
T{ 0 50 gd5 —> 50 40 30 20 10 0 }T
T{ -25 10 gd5 -> 10 0 -10 -20 }T

VARIABLE gditerations
VARIABLE gdincrement

gd6 (limit start increment —--)
0 gditerations !
?DO
1 gditerations +!
I
gditerations @ 6 = IF LEAVE THEN
gdincrement @
+LOOP gditerations @

T{ 4 4 -1 qd6 —>
T{ 1 4 -1qgd6 -> 4 3 2 1

T{ 4 1 -1 gd6 -> 1 0 -1 -2 -3 -4
T{ 4 1 O0gde -> 1 1 1 1 1 1
T{ 0 0 0 gdé6 —>

T{ 1 4 0 qgd6e -> 4 4 4 4 4 4
T{ 1 4 1qgd6-> 4 5 6 7 8 9
T{ 4 1 1 gd6e -—> 1 2 3

T{ 4 4 1 qdé6 —>

T{ 2 -1 -1 gd6 -> -1 -2 -3 -4 -5 -6
T{ -1 2 -1qd6 -> 2 1 0 -1

T{ 2 -1 0 qdé6 -> -1 -1 -1 -1 -1 -1
T{ -1 2 0 gd6e -—> 2 2 2 2 2 2
T{ -1 2 1qd6 -> 2 3 4 5 6 7
T{ 2 -1 1qd6 -> -1 0 1

W o o o i O O W oY oy O oy o) i O

}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T
}T

4

gdincrement

310

testsuite

Forth 200x / 18.1 F. Test Suite

F.6.2.0698 ACTION-OF

T{ DEFER deferl -> }T
T{ : action-deferl ACTION-OF deferl ; -> }T

T{ ' * ' deferl DEFER! —-> 1T

T{ 2 3 deferl -> 6 }T
T{ ACTION-OF deferl -> ' % }T
T{ action-deferl —> ' * }T

T{ " + IS deferl -—> }T

T{ 1 2 deferl -> 3 }T

T{ ACTION-OF deferl -> ' + }T

T{ action-deferl -> 7 + }T
F.6.2.0825 BUFFER:

DECIMAL

T{ 127 CHARS BUFFER: TBUF1l }T
T{ 127 CHARS BUFFER: TBUF2 -> }T

|
\%

\ Buffer is aligned
T{ TBUF1l ALIGNED -> TBUF1 }T

\ Buffers do not overlap
T{ TBUF2 TBUF1l — ABS 127 CHARS < —-> <FALSE> }T

\ Buffer can be written to
1 CHARS CONSTANT /CHAR
: TFULL? (c-addr n char —-- flag)
TRUE 2SWAP CHARS OVER + SWAP ?DO
OVER I CQR = AND
/CHAR +LOOP NIP

4

T{ TBUF1 127 CHAR x FILL -> }T

T{ TBUF1 127 CHAR * TFULL? —-> <TRUE> }T

T{ TBUF1 127 0 FILL -> }T

T{ TBUF1l 127 O TFULL? -> <TRUE> }T
F.6.2.0855 cC"

T{ : cgl Cc" 123" ; —> }T

T{ : cqz Cc" " ; -> T

T{ cgl COUNT EVALUATE -> 123 }T

T{ cg2 COUNT EVALUATE —> }T

F.6.2.0873 CASE
csl CASE 1 OF 111 ENDOF
2 OF 222 ENDOF
3 OF 333 ENDOF
>R 999 R>

testsuite 311

Forth 200x / 18.1

F. Test Suite
ENDCASE
T{ 1 csl —> 111 }T
T{ 2 csl —-> 222 }T
T{ 3 csl —> 333 }T
T{ 4 csl —> 999 }T

cs2 >R CASE
-1 OF CASE R@ 1 OF 100 ENDOF
2 OF 200 ENDOF

>R -300 R>
ENDCASE
ENDOF
-2 OF CASE R@ 1 OF -99 ENDOF
>R -199 R>
ENDCASE
ENDOF
>R 299 R>

ENDCASE R> DROP ;

T{ -1 1 cs2 -> 100 }T
T{ -1 2 cs2 -> 200 }T
T{ -1 3 ¢cs2 —> =300 }T
T{ -2 1 cs2 -> =99 }T
T{ -2 2 ¢cs2 —> =199 }T
T{ 0 2 cs2 -> 299 }T

F.6.2.0945 COMPILE,

:NONAME DUP + ; CONSTANT dup+
T{ : g dupt+ COMPILE, ; -> }T
T{ tas [gl ; —> }T

T{ 123 as —-> 246 }T

F.6.2.1173 DEFER

T{ DEFER defer2 —> }T
T{ ' = ' defer?2 DEFER! -> 1T
T{ 2 3 defer2 -> 6 }T

T{ ' + IS defer2 —> }T
T{ 1 2 defer2 -> 3 }T

F.6.2.1175 DEFER!
T{ DEFER defer3 -> }T

T{ ' * ' defer3 DEFER! -> }T
T{ 2 3 defer3 -> 6 }T

312

testsuite

Forth 200x / 18.1 F. Test Suite

T{ ' + ' defer3 DEFER! -> }T
T{ 1 2 defer3 -> 3 }T

F.6.2.1177 DEFER(Q@
T{ DEFER deferd -> }T

T{ ' = ' defer4 DEFER! -> }T
T{ 2 3 deferd -> o6 }T
T{ ' defer4 DEFER@ -> ' * }T

T{ ' + IS deferd4 -> }T
T{ 1 2 deferd -> 3 }T
T{ ' defer4d DEFER@ -> ' + }T

F.6.2.1342 ENDCASE
See F.6.2.0873 CASE.

F.6.2.1343 ENDOF
See F.6.2.0873 CASE.

F.6.2.1485 FALSE

T{ FALSE -> 0 }T

T{ FALSE —-> <FALSE> }T
F.6.2.1660 HEX

See F.6.1.0750 BASE.

F.6.2.1675 HOLDS
T{ 0. <# S" Test" HOLDS #> S" Test" COMPARE -> 0 }T

F.6.2.1725 1Is
T{ DEFER defer5 -> 1T
T{ : is—-defer5 IS defer5 ; -> }T

T{ '’
T{ 2

IS defer5 —> 1T
defer5 -> 6 }T
T{ '
T{ 1
F.6.2.1950 oOF
See F.6.2.0873 CASE

is-defer5 -> }T
defer5 —> 3 }T

N+ W o*

F.6.2.2020 PARSE-NAME
T{ PARSE-NAME abcd S" abcd" S= -> <TRUE> }T
T{ PARSE-NAME abcde S" abcde" S= -> <TRUE> }T

\ test empty parse area
T{ PARSE-NAME
NIP -> 0 }T \ empty line
T{ PARSE-NAME
NIP -> 0 }T \ line with white space

testsuite 313

F. Test Suite Forth 200x / 18.1

T{ : parse-name-test (“namel” “name2” -- n)
PARSE-NAME PARSE-NAME S= ; -> }T

T{ parse-name-test abcd abcd -> <TRUE> }T
T{ parse-name-test abcd abcd -> <TRUE> }T
T{ parse—name-test abcde abcdf -> <FALSE> }T
T{ parse—-name-test abcdf abcde -> <FALSE> }T
T{ parse—-name-test abcde abcde

-> <TRUE> }T
T{ parse-name-test abcde abcde

-> <TRUE> }T \ line with white space

F.6.2.2182 SAVE-INPUT

Testing with a file source
VARIABLE siv -1 siv !

NeverExecuted

." This should never be executed" ABORT
7
11111 SAVE-INPUT
siv @

[IF]
0 siv !
RESTORE-INPUT
NeverExecuted

[ELSE]
\ Testing the ELSE part is executed
22222

[THEN]

T{ —-> 11111 0 22222 }T \ Ocomes from RESTORE-INPUT

Testing with a string source
VARIABLE si_inc 0 si_inc !
sil
si_inc @ >IN +!
15 si_inc !

s$ S" SAVE-INPUT sil RESTORE-INPUT 12345"
T{ s$ EVALUATE si_inc @ -> 0 2345 15 }T

Testing nesting
read_a_line
REFILL O=

314

testsuite

Forth 200x / 18.1 F. Test Suite

ABORT" REFILL failed"
7
0 si_inc !
2VARIABLE 2res —-1. 2res 2!

siz2

read_a_line
read_a_line
SAVE-INPUT
read_a_line
read_a_line

s$ EVALUATE 2res 2!
RESTORE-INPUT

l4

WARNING: do not delete or insert lines of text after si2 is called otherwise the next test will fail

si2

33333 \ This line should be ignored

2res 2@ 44444 \ RESTORE-INPUT should return to this line
55555

T{ -> 0 0 2345 44444 55555 }T

F.6.2.2295 TO
See F.6.2.2405 VALUE.

F.6.2.2298 TRUE

T{ TRUE -> <TRUE> }T
T{ TRUE -> 0 INVERT }T

F.6.2.2405 VALUE

T{ 111 VALUE vl -> }T
T{ -999 VALUE v2 -> }T
T{ vl -> 111 }T

T{ v2 -> =999 }T

T{ 222 TO vl -> }T

T{ vl -> 222 }T

T{ : vdl vl ; —> 1T
T{ vdl —-> 222 }T

T{ : vd2 TO v2 ; -> }T
T{ v2 —> -999 }T

T{ -333 vd2 -> }T

T{ v2 -> =333 }T

T{ vl => 222 }T

testsuite 315

F. Test Suite Forth 200x / 18.1

F.6.2.2530 [COMPILE]

With default compilation semantics
T{ : [cl] [COMPILE] DUP ; IMMEDIATE -> }T
T{ 123 [cl] -> 123 123 }T

With an immediate word
T{ : [c2] [COMPILE] [cl] ; -> T
T{ 234 [c2] -> 234 234 }T

With special compilation semantics

T{ : [cif] [COMPILE] IF ; IMMEDIATE -> }T
T{ : [c3] [cif] 111 ELSE 222 THEN ; -> }T
T{ -1 [c3] —-> 111 }T

T{ O [c3] —-> 222 }T

F.8 The optional Double-Number word set
Two additional constants are defined to assist tests in this word set:

MAX-INT 2/ CONSTANT HI-INT \ 001...1
MIN-INT 2/ CONSTANT LO-INT \ 110...1

Before anything can be tested, the text interpreter must be tested (F.8.3.2). Once the
F.8.6.1.0360 2CONSTANT test has been preformed we can also define a number of double constants:

1S MAX-INT 2CONSTANT MAX-2INT \ 01...1
0 MIN-INT 2CONSTANT MIN-2INT \ 10...0
MAX-2INT 2/ 2CONSTANT HI-2INT \ 001...1
MIN-2INT 2/ 2CONSTANT LO-2INT \ 110...0

The rest of the word set can be tesed: F.8.6.1.1230 DNEGATE, F.8.6.1.1040 D+, F.8.6.1.1050 D—, F.8.6.1.1075
D0<,F.8.6.1.1080 D0O=, F.8.6.1.1090 D2 x, F.8.6.1.1100 D2 /, F.8.6.1.1110 D<, F.8.6.1.1120 D=, F.8.6.1.0390
2LITERAL, F.8.6.1.0440 2VARIABLE, F.8.6.1.1210 DMAX, F.8.6.1.1220 DMIN,
F.8.6.1.1140 D>s, F.8.6.1.1160 DABS, F.8.6.1.1830 M+, F.8.6.1.1820 M« / and F.8.6.1.1070 D.R which
also tests D. before moving on to the existion words with the F.8.6.2.0420 2ROT and F.8.6.2.1270 DU<
tests.

F.8.3.2 Text interpreter input number conversion

T{ 1. -> 1 0 }T
T{ -2. -> -2 -1 }T
T{ : rdll 3. ; rdll -> 3 0 }T
T{ : rdl2 -4. ; rdl2 -> -4 -1 }T

F.8.6.1.0360 2CONSTANT

T{ 1 2 2CONSTANT 2cl -> }T
T{ 2cl -> 1 2 }T

T{ : cdl 2cl ; -> }T
T{ cdl -> 1 2 }T

316 testsuite

Forth 200x / 18.1 F. Test Suite

T{ : cd2 2CONSTANT ; -> }T
T{ -1 -2 cd2 2c2 —> }T
T{ 2¢c2 -> -1 -2 }T

T{ 4 5 2CONSTANT 2c¢3 IMMEDIATE 2c3 -> 4 5 }T
T{ : cd6 2c3 2LITERAL ; cd6 -> 4 5 }T

F.8.6.1.0390 2LITERAL
T{ : cdl [MAX-2INT] 2LITERAL ; -> }T
T{ cdl -> MAX-2INT }T
T{ 2VARIABLE 2v4 IMMEDIATE 5 6 2v4 2! —-> }T

T{ : cd7 2v4 [2@] 2LITERAL ; cd7 -—> 5 6 }T
T{ : cd8 [6 71 2v4 [2V] ; 2v4 2@ -> 6 7 }T

F.8.6.1.0440 2VARIABLE
T{ 2VARIABLE 2vl -> }T

T{ 0. 2vl 2! —> }T
T{ 2vl 2@ -> 0. }T
T{ -1 -2 2vl 2! —> }T
T{ 2vl 2@ -> -1 -2 }T

T{ : cd2 2VARIABLE ; -> }T
T{ cd2 2v2 -> }T

T{ : cd3 2v2 2' ; —> T

T{ -2 -1 cd3 -> T

T{ 2v2 2@ -> -2 -1 }T

T{ 2VARIABLE 2v3 IMMEDIATE 5 6 2v3 2! -> }T
T{ 2v3 2@ -> 5 6 }T

F.8.6.1.1040 D+
T{ 0. 5. D+ -> 5. }T \ small integers
T{ -5. 0. D+ —> 5. }T
T{ 1. 2. D+ -> 3. }T
T{ 1. -2. D+ -=> -1. }T
T{ -1. 2. D+ —> 1. }T
T{ -1. -2. D+ -> -3. }T
T{ -1. 1. D+ —> 0. }T

T{ 0 O O 5D+ -> 0 5 }T \ mid range integers
T{ -1 5 0 0D+ -> -1 5 }T
T{ 0 O 0O -5D+ -> 0 -5 }T
T{ 0 -5-1 0D+ —> -1 -5 }T
T{ 0 1 0 2D+ -> 0 3 }T

T{ -1 1 0 -2 D+ -> -1 -1 }T
T{ 0-1 0 2D+ -> 0 1 }T
T{ 0 -1 -1 -2 D+ -> -1 -3 }T
T{ -1 -1 0 1D+ ->-1 0 }T

testsuite 317

F. Test Suite Forth 200x / 18.1

T{ MIN-INT O 2DUP D+ -> 0 1 }T

T{ MIN-INT S>D MIN-INT O D+ -> 0 0O }T

T{ HI-2INT 1. D+ -> 0 HI-INT 1+ }T \ large double integers

T { HI-2INT 2DUP D+ -> 1S 1- MAX-INT }T

T{ MAX-2INT MIN-2INT D+ -> -1. }T

T{ MAX-2INT LO-2INT D+ -> HI-2INT }T

T{ LO-2INT 2DUP D+ —> MIN-2INT }T

T{ HI-2INT MIN-2INT D+ 1. D+ -> LO-2INT }T
F.8.6.1.1050 D-

T{ 0. 5. D- —-> -5. }T \ small integers

T{ 5. 0. D- -> 5. }T

T{ 0. -5. D—- -> 5. }T

T{ 1. 2. D- -> -1. }T

T{ 1. -2. D- -> 3. }T

T{ -1. 2. D- -> -3. }T

T{ -1. -2. D—- -> 1. }T

T{ -1. -1. D- -> 0. }T

IT{ 0 0 0O 5D--> 0 -5 }T \ mid-range integers

T{ -1 5 0 0D- -> -1 5 }T

T{ 0 0 -1 -5D--> 1 4 }T

T{ 0 -5 0 0D--> 0 -5 1T

T{ -1 1 0 2 D- -> -1 -1 }T

T{ 0 1 -1 -2 D--> 1 2 }T

T{ 0-1 0 2D--> 0 -3 }T

T{ 0-1 0 -2D--> 0 1 }T

IT{ 0 0 O 1D--> 0 -1 }T

T{ MIN-INT O 2DUP D- -> 0. }T

T{ MIN-INT S>D MAX-INT OD- -> 1 1s }T

T{ MAX-2INT max—-2INT D- -> 0. }T \ large integers

T{ MIN-2INT min-2INT D- -> 0. }T

T{ MAX-2INT hi-2INT D- -> 10-2INT DNEGATE }T

T { HI-2INT 10-2INT D- -> max—2INT }T

T{ LO-2INT hi-2INT D- -> min-2INT 1. D+ }T

T{ MIN-2INT min-2INT D- -> 0. }T

T{ MIN-2INT 10-2INT D- —-> 10-2INT }T
F.8.6.1.1060 D.

See F.8.6.1.1070 D . R.
F.8.6.1.1070 D.R

MAX-2INT 71 73 M#%x/ 2CONSTANT dbll
MIN-2INT 73 79 M%x/ 2CONSTANT dbl2

318

testsuite

Forth 200x / 18.1 F. Test Suite
d>ascii (d - caddr u)
DUP >R <# DABS #S R> SIGN #> (—— caddrl u
HERE SWAP 2DUP 2>R CHARS DUP ALLOT MOVE 2R>
dbll d>ascii 2CONSTANT "dbll"
dbl2 d>ascii 2CONSTANT "dbl2"
DoubleOutput
CR ." You should see lines duplicated:" CR
5 SPACES "dbll" TYPE CR
5 SPACES dbll D. CR
8 SPACES "dbll" DUP >R TYPE CR
5 SPACES dbll R> 3 + D.R CR
5 SPACES "dbl2" TYPE CR
5 SPACES dbl2 D. CR
10 SPACES "dbl2" DUP >R TYPE CR
5 SPACES dbl2 R> 5 + D.R CR
T{ DoubleOutput -> T
F.8.6.1.1075 DO<
T{ 0. DO< —-> <FALSE> }T
T{ 1. DO< —-> <FALSE> }T
T{ MIN-INT 0 DO< —> <FALSE> }T
T{ 0 MAX-INT DO< —-> <FALSE> }T
T{ MAX-2INT DO< -> <FALSE> }T
T{ -1. DO< -> <TRUE> }T
T{ MIN-2INT DO< —-> <TRUE> }T
F.8.6.1.1080 DO=
T{ 1. DO= —-> <FALSE> }T
T{ MIN-INT 0 DO= —-> <FALSE> }T
T{ MAX-2INT DO= —-> <FALSE> }T
T{ -1 MAX-INT DO= -> <FALSE> }T
T{ 0. DO= —-> <TRUE> }T
T -1. DO= —-> <FALSE> }T
T{ 0 MIN-INT DO= -> <FALSE> }T
F.8.6.1.1090 D2
T{ 0. D2x —> 0. D2% }T
T{ MIN-INT 0 D2* —> 0 1 T
T{ HI-2INT D2* —-> MAX-2INT 1. D= }T
T{ LO-2INT D2* —> MIN-2INT }T
F.8.6.1.1100 D2/
T{ 0. D2/ —> 0. }T
T{ 1. b2/ —> 0. }T
testsuite 319

F. Test Suite

Forth 200x / 18.1

T
T{
T{
T{

01
MAX-2INT
-1.
MIN-2INT

F.8.6.1.1110 D<

T{ 0.
T{ 0.
T{ 1.
T{ -1.
T{ -1.
T{ -2.
T{ -1.
T{ -1.
T{ MIN-2INT
T{ MAX-2INT
T{ MAX-2INT
T{ MAX-2INT
T{ MIN-2INT
F.8.6.1.1120 D=
T{ -1.
T{ -1.
T{ -1.
T{ 0.
T{ 0.
T{ 0.
T{ 1.
T{ 1.
T{ 1.
T{ 0 -1
T{ 0 -1
T{ 0 -1
T{ 0 0
T{ 0 0
T{ 0 0
T{ 0 1
T{ 0 1
T{ 0 1
T{ MAX-2INT
T{ MAX-2INT
T{ MAX-2INT
T{ MAX-2INT
T{ MAX-2INT
T{ MIN-2INT

D2/ ->
D2/ —>
D2/ ->
D2/ ->
MAX-2T
MAX-21I
MIN-2TI
2DUP -
2DUP

0

0

0

0

0

0

0

0

0

MIN-INT
HI-2INT
-1.
LO-2INT
1. D< —>
0. D< —>
0. D< —>
1. D< —>
0. D< —>
1. D< —>
2. D< —>
NT D< —>
NT D< —>
1. D< —>
NT D< —>
1. D+ D<
1. D+ D<
1. D= —>
0. D= —>
1. D= —>
1. D= —>
0. D= —>
1. D= —>
1. D= —>
0. D= —>
1. D= —>
-1 D= —>
0 D= —>
1 D= —>
-1 D= —>
0 D= —>
1 D= —>
-1 D= —>
0 D= —>
1 D= ->

MIN-2INT D= ->

0. D= —>

MAX-2INT D= —>

HI-2IN

T D= —->

MIN-2INT D= ->
MIN-2INT D= —>

0 }T
}T
}T
}T

<TRUE>
<FALSE>
<FALSE>
<TRUE>
<TRUE>
<TRUE>
<FALSE>
<TRUE>
<TRUE>
<FALSE>
<FALSE>

}T
}T
}T
}T
}T
}T
}T
}T
}IT
}T
}T

—-> <FALSE>
-> <TRUE>

<TRUE>
<FALSE>
<FALSE>
<FALSE>
<TRUE>
<FALSE>
<FALSE>
<FALSE>
<TRUE>

<TRUE>
<FALSE>
<FALSE>
<FALSE>
<TRUE>
<FALSE>
<FALSE>
<FALSE>
<TRUE>

<FALSE>
<FALSE>
<TRUE>
<FALSE>
<FALSE>
<TRUE>

}T
}T
}T
}T
}T
}T
}T
}T
}T

}T
}T
}T
}T
}T
}T
}T
}T
}T

}T
}T
}T
}T
}T
}T

3T
3T

320

testsuite

Forth 200x / 18.1 F. Test Suite

T{ MIN-2INT LO-2INT D= -> <FALSE> }T
T{ MIN-2INT MAX-2INT D= -> <FALSE> }T

F.8.6.1.1140 D>sS

T{ 1234 0 D>S —-> 1234 }T

T{ -1234 -1 D>S -> -1234 }T

T{ MAX-INT 0 D>S -> MAX-INT }T

T{ MIN-INT -1 D>S -> MIN-INT }T
F.8.6.1.1160 DABS

T{ 1. DABS —> 1. 1T

T{ -1. DABS —> 1. }T

T{ MAX-2INT DABS -> MAX-2INT }T

T{ MIN-2INT 1. D+ DABS —-> MAX-2INT }T

F.8.6.1.1210 DMAX

T{ 1. 2. DMAX -> 2. }T
T{ 1. 0. DMAX -> 1. }T
T{ 1. -1. DMAX -> 1. }T
T{ 1. 1. DMAX -> 1. }T
T{ 0. 1. DMAX —-> 1. }T
T{ 0. -1. DMAX -> 0. }T
T{ -1. 1. DMAX -> 1. }T
T{ -1. -2. DMAX -> -1. }T

T{ MAX-2INT HI-2INT DMAX -> MAX-2INT }T
T{ MAX-2INT MIN-2INT DMAX -> MAX-2INT }T
T{ MIN-2INT MAX-2INT DMAX -> MAX-2INT }T
T{ MIN-2INT LO-2INT DMAX -> LO-2INT }T

T{ MAX-2INT 1. DMAX —-> MAX-2INT }T
T{ MAX-2INT -1. DMAX -> MAX-2INT }T
T{ MIN-2INT 1. DMAX -> 1. }T
T{ MIN-2INT -1. DMAX -> -1. }T
F.8.6.1.1220 DMIN
T{ 1. 2. DMIN -> 1. }T
T{ 1. 0. DMIN -> 0. }T
T{ 1. -1. DMIN -> -1. }T
T{ 1. 1. DMIN -> 1. }T
T{ 0. 1. DMIN -> O. }T
T{ 0. -1. DMIN -> -1. }T
T{ -1. 1. DMIN -> -1. }T
T{ -1. -2. DMIN -> -2. }T

T{ MAX-2INT HI-2INT DMIN -> HI-2INT }T
T{ MAX-2INT MIN-2INT DMIN -> MIN-2INT }T
T{ MIN-2INT MAX-2INT DMIN -> MIN-2INT }T
T{ MIN-2INT LO-2INT DMIN -> MIN-2INT }T

testsuite 321

F. Test Suite Forth 200x / 18.1

T{ MAX-2INT 1. DMIN —> 1. 3T
T{ MAX-2INT -1. DMIN > -1. }T
T{ MIN-2INT 1. DMIN -> MIN-2INT }T
T{ MIN-2INT -1. DMIN -> MIN-2INT }T

F.8.6.1.1230 DNEGATE
T { 0. DNEGATE -> 0. }T
T{ 1. DNEGATE -> -1. }T
T{ -1. DNEGATE -> 1. }T
T{ max—-2int DNEGATE —-> min—-2int SWAP 1+ SWAP }T
T{ min-2int SWAP 14+ SWAP DNEGATE -> max—2int }T

F.8.6.1.1820 Mx/

To correct the result if the division is floored, only used when necessary, i.e., negative quotient and
remainder # 0.

?floored [-3 2 / -2 =] LITERAL IF 1. D- THEN ;

T{ 5. 7 11 Mx/ -> 3. 1T

T{ 5. -7 11 Mx/ -> -3. ?2floored }T

T{ -5. 7 11 Mx/ —> -3. ?floored }T

T{ -5. =7 11 Mx/ -> 3. 1T

T{ MAX-2INT 8 16 M%/ —> HI-2INT }T

T{ MAX-2INT -8 16 Mx/ -> HI-2INT DNEGATE ?floored }T
T{ MIN-2INT 8 16 Mx/ —-> LO-2INT }T

T{ MIN-2INT -8 16 Mx/ —> LO-2INT DNEGATE }T

T{ MAX-2INT MAX-INT MAX-INT M/ -> MAX-2INT }T

T{ MAX-2INT MAX-INT 2/ MAX-INT M/ -> MAX-INT 1- HI-2INT NIP }T

T{ MIN-2INT LO-2INT NIP DUP NEGATE Mx/ -> MIN-2INT }T

T{ MIN-2INT LO-2INT NIP 1- MAX-INT Mx/ -> MIN-INT 3 + HI-2INT NIP 2 + }T
T{ MAX-2INT LO-2INT NIP DUP NEGATE Mx/ -> MAX-2INT DNEGATE }T

T{ MIN-2INT MAX-INT DUP Mx/ —-> MIN-2INT }T

F.8.6.1.1830 M+

T{ HI-2INT 1 M+ —-> HI-2INT 1. D+ }T
T{ MAX-2INT -1 M+ -> MAX-2INT -1. D+ }T
T{ MIN-2INT 1 M+ -> MIN-2INT 1. D+ }T
T{ LO-2INT -1 M+ -> LO-2INT -1. D+ }T

F.8.6.2.0420 2ROT
T{ 1. 2. 3. 2ROT -> 2. 3. 1. 1T
T{ MAX-2INT MIN-2INT 1. 2ROT -> MIN-2INT 1. MAX-2INT }T

F.8.6.2.0435 2VALUE

T{ 1 2 2VALUE t2val -> }T
T{ t2val -> 1 2 }T

T{ 3 4 TO t2val -> }T
T{ t2val -> 3 4 }T

322 testsuite

Forth 200x / 18.1

F. Test Suite

S

ett2val t2val 2SWAP TO t2val ;
T{ 5 6 sett2val t2val -> 3 4 5 6 }T

F.8.6.2.1270 DU<

TH{
T{
T
T{

T{
T{
TH{
TH{
T{

1. 1. DU< —>
1. -1. DU< —->
-1. 1. DU< —>
-1. -2. DU< ->

MAX-2INT HI-2INT DU< —>

HI-2INT MAX-2INT DU< —>
MAX-2INT MIN-2INT DU< —>
MIN-2INT MAX-2INT DU< —>
MIN-2INT LO-2INT DU< -—>

<FALSE>
<TRUE>

<FALSE>
<FALSE>

<FALSE>
<TRUE>
<TRUE>
<FALSE>
<TRUE>

F.9 The optional Exception word set

}T
}T
}T
}T

}T
}T
}T
}T
}T

The test F.9.6.1.0875 CATCH also test THROW. This should be followed by the test F.9.6.2.0680 ABORT"

which also test ABORT. Finally, the general exception handling is tested in F.9.3.6.

F.9.3.6 Exception handling

Ideally all of the throw codes should be tested. Here only the thow code for an “Undefined Word” exception

is tested, assuming that the word $$UndefedWords$$ is undefined.

DECIMAL
t7 s"
t8 s"
t9 s"

T{ 6 7

333 $SUndefedWords$s 334"
222 t7 223" EVALUATE 224

EVALUATE 335

4

111 112 t8 113" EVALUATE 114 ;

" t9 c6 3 -> 6 7 13 3 }T

F.9.6.1.0875 CATCH
See F.9.6.1.2275 THROW.

F.9.6.1.2275 THROW

DEC

t
He
T{

t
c

T{ c2 -=> 1 2 8 0 }T \ OTHROW does nothing

t
c

T{ ¢3 -=> 1 2 99 }T \ Restores stack to CATCH depth

IMAL

1 9
11 !
cl —>

N ~e

3 ['] t1 CATCH ;
12

2 8 0 THROW ;

2 12 ['] t2 CATCH ;

3 78 9 99 THROW ;
312 ['] t3 CATCH ;

1
390 }T \ NoTHROW executed

testsuite

323

F. Test Suite Forth 200x / 18.1

t4 1- DUP 0> IF RECURSE ELSE 999 THROW -222 THEN ;
c4 34510 ["] t4 CATCH -111 ;
T{ c4 -> 3 4 50 999 -111 }T \ Test return stack unwinding

t5 2DROP 2DROP 9999 THROW ;

c5 12 34 ["] t5 CATCH \ Test depth restored correctly

DEPTH >R DROP 2DROP 2DROP R> ; \ after stack has been emptied
T{ ¢c5 -> 5 }T

F.9.6.2.0670 ABORT
See F.9.6.2.0680 ABORT".

F.9.6.2.0680 ABORT"

DECIMAL

—1 CONSTANT exc_abort
—2 CONSTANT exc_abort"

—13 CONSTANT exc_undef
t6 ABORT ;

The 77 in £ 10 is necessary for the second ABORT" test as the data stack is restored to a depth of 2
when THROW is executed. The 77 ensures the top of stack value is known for the results check.

t10 77 SWAP ABORT" This should not be displayed"
c6 CATCH
CASE exc_abort OF 11 ENDOF
exc_abort" OF 12 ENDOF
exc_undef OF 13 ENDOF
ENDCASE

4

4

T{ 12"’ t6 c6 —> 1 2 11 }T \ Testthat ABORT is caught
T{ 3 0 " t10 c6 —> 3 77 }T \ ABORT" does nothing
T{ 4 57 t10 c6 -> 4 77 12 }T \ ABORT" caught, no message

F.10 The optional Facility word set
F.10.6.2.1306.40 EKEY>FKEY

TEFKEY" ("ccc<quote>" -- u flag)
CR ." Please press " POSTPONE ." EKEY EKEY>FKEY ;
T{ TFKEY" <left>" —> K-LEFT <TRUE> }T
T{ TFKEY" <right>" -> K-RIGHT <TRUE> }T
T{ TFKEY" <up>" -> K-UP <TRUE> }T
T{ TFKEY" <down>" —> K-DOWN <TRUE> }T
T{ TFKEY" <home>" -> K—-HOME <TRUE> }T
T{ TFKEY" <end>" —> K-END <TRUE> }T
T{ TFKEY" <prior>" -> K-PRIOR <TRUE> }T
T{ TFKEY" <next>" —> K-NEXT <TRUE> }T

324 testsuite

Forth 200x / 18.1 F. Test Suite

T{ TFKEY" <F1>" -> K-F1 <TRUE> }T
T{ TFKEY" <F2>" —-> K-F2 <TRUE> }T
T{ TFKEY" <F3>" -> K-F3 <TRUE> T
T{ TFKEY" <F4>" -> K=-F4 <TRUE> }T
T{ TFKEY" <F5>" —-> K-F5 <TRUE> }T
T{ TFKEY" <F6>" —-> K-F6 <TRUE> }T
T{ TFKEY" <F7>" —-> K-F7 <TRUE> }T
T{ TFKEY" <F8>" —-> K-F8 <TRUE> }T
T{ TFKEY" <F9>" -> K-F9 <TRUE> }T

T{ TFKEY" <F10>" -> K-F10 <TRUE> }T
T{ TFKEY" <F11>" -> K-F11 <TRUE> }T
T{ TFKEY" <F11>" -> K-F12 <TRUE> }T

T{ TFKEY" <shift-left>" -> K-LEFT K-SHIFT-MASK OR <TRUE> }T
T{ TFKEY" <ctrl-left>" -> K-LEFT K-CTRL-MASK OR <TRUE> }T
T{ TFKEY" <alt-left>" -> K-LEFT K-ALT-MASK OR <TRUE> }T

T{ TFKEY" <a>" SWAP EKEY>CHAR -> <FALSE> CHAR a <TRUE> }T

F.11 The optional File-Access word set

These tests create files in the current directory, if all goes well these will be deleted. If something fails
they may not be deleted. If this is a problem ensure you set a suitable directory before running this
test. Currently, there is no ANS standard way of doing this. the file names used in these test are:
“fatestl.txt”, “fatest2.txt”and “fatest3.txt”.

The test F.11.6.1.1010 CREATE-FILE also tests CLOSE-FILE, F.11.6.1.2485 WRITE-LINE
also tests W/O and OPEN-FILE, F.11.6.1.2090 READ-LINE includes a test for R/O,
F.11.6.1.2142 REPOSITION-FILE includes tests for R/W, WRITE-FILE, READ-FILE,
FILE-POSITION, and S". The F.11.6.1.1522 FILE-SIZE test includes a test for BIN. The test
F.11.6.1.2147 RESTIZE-F ILE should then be run followed by the F.11.6.1.1190 DELETE-FILE test.

The F.11.6.1.0080 (test should be next, followed by F.11.6.1.2218 SOURCE-ID the test which test the
extended versions of (and SOURCE-ID respectively.

Finally F.11.6.2.2130 RENAME-FILE tests the extended words RENAME-FILE, FILE-STATUS, and
FLUSH-FILE.

F.11.6.1.0080 (

T{ (1 2 3
4 5 6
78 9) 11 22 33 -> 11 22 33 }T
F.11.6.1.1010 CREATE-FILE

fnl S" fatestl.txt" ;
VARIABLE fidl

T{ fnl R/W CREATE-FILE SWAP fidl ! -> 0 }T
T{ fidl @ CLOSE-FILE -> 0 }T

testsuite 325

F. Test Suite Forth 200x / 18.1

F.11.6.1.1190 DELETE-FILE

T{ fn2 DELETE-FILE -> 0 }T
T{ fn2 R/W BIN OPEN-FILE SWAP DROP -> 0 }T
T{ fn2 DELETE-FILE -> 0 }T

F.11.6.1.1522 FILE-SIZE

cbuf buf bsize 0 FILL ;
fn2 S" fatest2.txt" ;
VARIABLE fid2
setpad PAD 50 0 DO I OVER C! CHAR+ LOOP DROP ;

setpad
Note: If anything else is defined setpad must be called again as the pad may move

T{ fn2 R/W BIN CREATE-FILE SWAP fid2 ! -> 0 }T

T{ PAD 50 fid2 @ WRITE-FILE fid2 @ FLUSH-FILE -> 0 0 }T
T{ fid2 @ FILE-SIZE -> 50. 0 }T

T{ 0. fid2 @ REPOSITION-FILE -> 0 }T

T{ cbuf buf 29 fid2 @ READ-FILE -> 29 0 }T

T{ PAD 29 buf 29 COMPARE -> 0 }T

T{ PAD 30 buf 30 COMPARE -> 1 }T

T{ cbuf buf 29 fid2 @ READ-FILE -> 21 0 }T

T{ PAD 29 + 21 buf 21 COMPARE -> 0 }T

T{ fid2 @ FILE-SIZE DROP fid2 @ FILE-POSITION DROP D= -> <TRUE> }T
T{ buf 10 fid2 @ READ-FILE -> 0 0 }T

T{ fid2 @ CLOSE-FILE -> 0 }T

F.11.6.1.1718 INCLUDED
See F.11.6.2.2144.50 REQUIRED.

F.11.6.1.2090 READ-LINE

200 CONSTANT bsize
CREATE buf bsize ALLOT
VARIABLE #chars

T{ fnl R/O OPEN-FILE SWAP fidl ! -> 0 }T

T{ fidl @ FILE-POSITION -> 0. 0 }T

T{ buf 100 fidl @ READ-LINE ROT DUP #chars ! —>
<TRUE> 0 linel SWAP DROP }T

T{ buf #chars @ linel COMPARE —> 0 }T

T{ fidl @ CLOSE-FILE -> 0 }T

F.11.6.1.2142 REPOSITION-FILE

line2 S" Line 2 blah blah blah" ;
rll buf 100 fidl @ READ-LINE ;
2VARIABLE fp

326 testsuite

Forth 200x / 18.1 F. Test Suite

T{ fnl R/W OPEN-FILE SWAP fidl ! -> 0 }T
T{ fidl @ FILE-SIZE DROP fidl @ REPOSITION-FILE -> 0 }T
T{ fidl @ FILE-SIZE -> fidl @ FILE-POSITION }T

T{ line2 fidl @ WRITE-FILE -> 0 }T
T{ 10. fidl @ REPOSITION-FILE -> 0 }T
T{ fidl @ FILE-POSITION -> 10. 0 }T

T{ 0. fidl @ REPOSITION-FILE -> 0 }T

T{ rll -> linel SWAP DROP <TRUE> 0 }T

T{ rll -> ROT DUP #chars ! }T<TRUE> 0 line2 SWAP DROP
T{ buf #chars @ line2 COMPARE —> (0 }T

T{ rll -> 0 <FALSE> 0 }T

T{ fidl @ FILE-POSITION ROT ROT fp 2! -> 0 }T
T{ fp 2@ fidl @ FILE-SIZE DROP D= -> <TRUE> }T
T{ 8" " fidl @ WRITE-LINE -> 0 }T

T{ 8" " fidl @ WRITE-LINE -> 0 }T

T{ fp 2@ fidl @ REPOSITION-FILE -> 0 }T

T{ rll -> 0 <TRUE> 0 }T

T{ rll -> 0 <TRUE> 0 }T

T{ rll -> 0 <FALSE> 0 }T

T{ fidl @ CLOSE-FILE -> 0 }T

F.11.6.1.2147 RESIZE-FILE

setpad

T{ fn2 R/W BIN OPEN-FILE SWAP fid2 ! -> 0 }T
T{ 37. fid2 @ RESIZE-FILE -> 0 }T

T{ fid2 @ FILE-SIZE -> 37. 0 }T

T{ 0. fid2 @ REPOSITION-FILE -> 0 }T

T{ cbuf buf 100 fid2 @ READ-FILE -> 37 0 }T
T{ PAD 37 buf 37 COMPARE -> 0 }T

T{ PAD 38 buf 38 COMPARE -> 1 }T

T{ 500. fid2 @ RESIZE-FILE -> 0 }T

T{ fid2 @ FILE-SIZE -> 500. 0 }T

T{ 0. fid2 @ REPOSITION-FILE -> 0 }T

T{ cbuf buf 100 fid2 @ READ-FILE -> 100 0 }T
T{ PAD 37 buf 37 COMPARE -> 0 }T

T{ fid2 @ CLOSE-FILE -> 0 }T

F.11.6.1.2165 s" edis

F.11.6.1.2218 SOURCE-ID
T{ SOURCE-ID DUP -1 = SWAP 0= OR -> <FALSE> }T

F.11.6.1.2485 WRITE-LINE

linel S" Line 1"

testsuite 327

F. Test Suite Forth 200x / 18.1

T{ fnl W/O OPEN-FILE SWAP fidl ! -> 0 }T
T{ linel fidl @ WRITE-LINE -> 0 }T
T{ fidl @ CLOSE-FILE -> 0 }T

F.11.6.2.1714 INCLUDE
See F.11.6.2.2144.50 REQUIRED.

F.11.6.2.2130 RENAME-FILE

fn3 S" fatest3.txt" ;
>end fidl @ FILE-SIZE DROP fidl @ REPOSITION-FILE ;

T{ fn3 DELETE-FILE DROP -> }T

T{ fnl fn3 RENAME-FILE -> 0 }T

\ Return value is undefined

T{ fnl FILE-STATUS SWAP DROP 0= -> <FALSE> }T

T{ fn3 FILE-STATUS SWAP DROP 0= -> <TRUE> }T

T{ fn3 R/W OPEN-FILE SWAP fidl ! -> 0 }T

T{ >end -> 0 }T

T{ S" Final line" fidl @ WRITE-LINE -> 0 }T

T{ fidl @ FLUSH-FILE -> 0 }T \ Can only test FLUSH-FILE doesn’t fail
T{ fidl @ CLOSE-FILE -> 0 }T

\ Tidy the test folder
T{ fn3 DELETE-FILE DROP -> 1T

F.11.6.2.2144.10 REQUIRE
See F.11.6.2.2144.50 REQUIRED.

F.11.6.2.2144.50 REQUIRED

This test requires two additional files: required-helperl.fsand required-helper2.fs.
Both of which hold the text:

1+
As for the test themselves:

T{ 0
S" required-helperl.fs" REQUIRED \ Increment TOS
REQUIRE required-helperl.fs \ Ignore - already loaded
INCLUDE required-helperl.fs \ Increment TOS

-> 2 }T

T{ O
INCLUDE required-helper2.fs \ Increment TOS
S" required-helper2.fs" REQUIRED \ Ignored - already loaded
REQUIRE required-helper2.fs \ Ignored - already loaded
S" required-helper2.fs" INCLUDED \ Increment TOS
-> 2 }T

328 testsuite

Forth 200x / 18.1 F. Test Suite

F.12 The optional Floating-Point word set

F.12.6.2.1489 FATAN2
[UNDEFINED] NaN [IF] Oe Oe F/ FCONSTANT NaN [THEN]
[UNDEFINED] +Inf [IF] le Oe F/ FCONSTANT +Inf [THEN]
[UNDEFINED] -Inf [IF] -le Oe F/ FCONSTANT -Inf [THEN]

TRUE verbose !
DECIMAL

The test harness default for EXACT ? is TRUE. Uncomment the following line if your system needs
it to be FALSE
\ SET-NEAR

VARIABLE #errors 0 #errors !

:NONAME (c-addr u ——)
(Display an error message followed by the line that had the error.)
1 #errors +! errorl ; error—-xt !

[UNDEFINED] pi [IF]
0.3141592653589793238463E1 FCONSTANT pi
[THEN]

[UNDEFINED] -pi [IF]
pi FNEGATE FCONSTANT -pi
[THEN]

FALSE [IF]
0.7853981633974483096157E0 FCONSTANT pi/4
-0.7853981633974483096157E0 FCONSTANT -pi/4
0.1570796326794896619231E1 FCONSTANT pi/2
-0.1570796326794896619231E1 FCONSTANT -pi/2
0.4712388980384689857694E1 FCONSTANT 3pi/2
0.2356194490192344928847E1 FCONSTANT 3pi/4
-0.2356194490192344928847E1 FCONSTANT -3pi/4
[ELSE]
pi 4e F/ FCONSTANT pi/4
-pi 4e F/ FCONSTANT -pi/4
pi 2e F/ FCONSTANT pi/2
-pi 2e F/ FCONSTANT -pi/2
pi/2 3e Fx FCONSTANT 3pi/2
pi/4 3e Fx FCONSTANT 3pi/4
-pi/4 3e Fx FCONSTANT -3pi/4
[THEN]

verbose @ [IF]
:NONAME (—-- fp.separate?)
DEPTH >R le DEPTH R> FDROP 2R> = ; EXECUTE
CR . (floating-point and data stacks)

testsuite 329

F. Test Suite Forth 200x / 18.1

[IF] . (*separate*) [ELSE] . (*notseparate®) [THEN]
CR
[THEN]

TESTING normal values

\ y X rad deg
T{ Oe 1le FATAN2 —> Oe R}IT \ 0
T{ 1le 1le FATAN2 —> pi/4 R}T \ 45
T{ 1le 0Oe FATAN2 —> pi/2 R}IT \ 90
T{ -le —-le FATAN2 -> -3pi/4 R}T \ 135
T{ Oe -le FATAN2 —> pi R}T \ 180
T{ -le 1le FATAN2 -> -pi/4 R}T \ 225
T{ -le 0Oe FATAN2 -> -pi/2 R}T \ 270
T{ -le 1le FATAN2 -> -pi/4 R}T \ 315

TESTING Single UNIX 3 special values spec

\ ISO C/ Single UNIX Specification Version 3:

\ http://www.unix.org/single_unix_specification/
\ Select “Topic”, then “Math Interfaces”, then “atan2 ()

\ http://www.opengroup.org/onlinepubs/009695399/
\ functions/atan2f.html

\ If yis+/-0 and x is < 0, +/-pi shall be returned.
T{ 0Oe —-le FATAN2 -> pi R}T
T{ -0e -le FATAN2 -> -pi R}T

\ Ifyis+/-0 and x is > 0, 4+/-0 shall be returned.
T{ 0Oe 1le FATAN2 -> 0(Oe R}T
T{ -0e 1le FATAN2 -> -0e R}T

\ Ifyis <0 and x is +/-0, -pi/2 shall be returned.
T{ -le 0Oe FATAN2 -> -pi/2 R}T
T{ -le —-0e FATAN2 —-> -pi/2 R}T

\ Ifyis>0 and xis +/-0, pi/2 shall be returned.
T{ 1le 0e FATAN2 -> pi/2 R}T
T{ 1le —-0e FATAN2 -> pi/2 R}T

TESTING Single UNIX 3 special values optional spec
\ Optional ISO C / single UNIX specs:

\ Ifeither x or y is NaN, a NaN shall be returned.
T{ NaN 1le FATAN2 —-> NaN R}T
T{ 1le NaN FATAN2 -> NaN R}T
T{ NaN NaN FATAN2 —-> NaN R}T

330 testsuite

http://www.unix.org/single_unix_specification/
http://www.opengroup.org/onlinepubs/009695399/functions/atan2f.html
http://www.opengroup.org/onlinepubs/009695399/functions/atan2f.html

Forth 200x / 18.1

F. Test Suite

\ If yis+/-0 and x is -0, +/-pi shall be returned.
T{ Oe -0e FATAN2 -> pi R}T
T{ -0e -0e FATAN2 -> -pi R}T

\ If yis +/-0 and x is +0, +/-0 shall be returned.
T{ Oe 0Oe FATAN2 -> +0e R}T
T{ -0e 0Oe FATAN2 —> -0e R}T

\ For finite values of +/-y > 0, if x is -Inf, +/-pi shall be returned.

T{ le -Inf FATAN2 -> pi R}T
T{ -le -Inf FATAN2 -> -pi R}T

\ For finite values of +/-y > 0, if x is +Inf, +/-0 shall be returned.

T{ le +Inf FATAN2 -> +0e R}T
T{ -le +Inf FATAN2 -> -0e R}T

\ For finite values of x, if y is +/-Inf, +/-pi/2 shall be returned.

T{ +Inf 1le FATAN2 -> pi/2 R}T
T{ +Inf -le FATAN2 -> pi/2 R}T
T{ +Inf Oe FATAN2 -> pi/2 R}T
T{ +Inf -0e FATAN2 -> pi/2 R}T
T{ -Inf 1le FATAN2 -> -pi/2 R}T
T{ -Inf -le FATAN2 -> -pi/2 R}T
T{ -Inf Oe FATAN2 -> -pi/2 R}T
T{ -Inf -0e FATAN2 -> -pi/2 R}T

\ If yis +/-Inf and x is -Inf, +/-3pi/4 shall be returned.

T{ +Inf -Inf FATAN2 -> 3pi/4 R}T
T{ —-Inf -Inf FATAN2 —-> -3pi/4 R}T

\ If yis +/-Inf and x is +Inf, +/-pi/4 shall be returned.

T{ +Inf +Inf FATAN2 -> pi/4 R}T
T{ —-Inf +Inf FATAN2 -> -pi/4 R}T

verbose @ [IF]
CR . (#ERRORS:) #errors @ . CR

[THEN]
F.12.6.2.1627 FTRUNC

SET-EXACT

T{ -0E FTRUNC FO= —-> <TRUE> }T
T{ -1E-9 FTRUNC FO= —-> <TRUE> }T
T{ -0.9E FTRUNC FO= —> <TRUE> }T
T{ -1E 1E-5 F+ FTRUNC FO= -> <TRUE> }T
T{ OE FTRUNC -> O0E R}T
T{ 1E-9 FTRUNC -> O0E R}T
T{ -1E -1E-5 F+ FTRUNC -> -1E R}T
T{ 3.14E FTRUNC -> 3E R}T
T{ 3.99E FTRUNC -> 3E R}T

testsuite

331

F. Test Suite

Forth 200x / 18.1

T{ 4E
T{ -4E
T{ -4.1E

F.12.6.2.1628 FVALUE
T{ 0e0 FVALUE Tval -> }T

T{ Tval —-> 0eO0
T{ 1le0 TO Tval
T{ Tval -> 1eO0

setTval Tval
T{ 2e0 setTval

T{ 5e0 TO Tval

FTRUNC -> 4E R}T
FTRUNC -> —4EF R}T
FTRUNC -> —4E R}T

R}T
-> T
R}T

FSWAP TO Tval ;
Tval —> 1e0 2e0 RR}T

-> T

[execute] EXECUTE ; IMMEDIATE
T{ ' Tval] [execute] [—-> 2e0 R}T

F.14 The optional Memory-Allocation word set

These test require a new variable to hold the address of the allocated memory. Two helper words are defined
to populate the allocated memory and to check the memory:

VARIABLE addr

4

write-cell-mem (
1+ 1 DO I OVER !

check-cell-mem (
1+ 1 DO
I SWAP >R >R
T{ R> (I) —>
R> CELL+
LOOP DROP

write-char-mem (
1+ 1 DO I OVER C!

check-char-mem (

1+ 1 DO
I SWAP >R >R
T{ R> (I) —>
R> CHAR+

LOOP DROP

addr n ——)
CELL+ LOOP DROP

addr n —-)

R@ (addr) @ }T

addr n ——)
CHAR+ LOOP DROP

addr n ——)

R@ (addr) CQ@ }T

The test F.14.6.1.0707 ALLOCATE includes a test for FREE.

332

testsuite

Forth 200x / 18.1 F. Test Suite

F.14.6.1.0707 ALLOCATE
VARIABLE datsp

HERE datsp !

T{ 50 CELLS ALLOCATE SWAP addr ! —> 0 }T

T{ addr @ ALIGNED -> addr @ }T \ Testaddress is aligned

T{ HERE —-> datsp @ }T \ Check data space pointer is unaffected
addr @ 50 write-cell-mem

addr @ 50 check-cell-mem \ Check we can access the heap

T{ addr @ FREE —> 0 }T

T{ 99 ALLOCATE SWAP addr ! -> 0 }T

T{ addr @ ALIGNED -> addr @ }T \ Testaddress is aligned

T{ addr @ FREE -> 0 }T

T{ HERE -> datsp @ }T \ Data space pointer unaffected by FREE

T{ -1 ALLOCATE SWAP DROP 0= -> <FALSE> }T \ Memory allocate failed

F.14.6.1.1605 FREE
See F.14.6.1.0707 ALLOCATE

F.14.6.1.2145 RESIZE

T{ 50 CHARS ALLOCATE SWAP addr ! -> 0 }T
addr @ 50 write-char-mem addr @ 50 check-char-mem

\ Resize smaller does not change content.
T{ addr @ 28 CHARS RESIZE SWAP addr ! -> 0 }T
addr @ 28 check-char-mem

\ Resize larger does not change original content.
T{ addr @ 100 CHARS RESIZE SWAP addr ! -> 0 }T
addr @ 28 check-char-mem

\ Resize error does not change addr
T{ addr @ -1 RESIZE 0= -> addr @ <FALSE> }T

T{ addr @ FREE -> 0 }T
T{ HERE -> datsp @ }T \ Data space pointer is unaffected

F.15 The optional Programming-Tools word set

F.15.6.2.0702 AHEAD

T{ : ptl AHEAD 1111 2222 THEN 3333 ; -> }T
T{ ptl -> 3333 }T

F.15.6.2.1015 CS-PICK

?repeat
0 CS-PICK POSTPONE UNTIL
; IMMEDIATE

testsuite 333

F. Test Suite Forth 200x / 18.1

VARIABLE pt4

T{ : pt5 (nl --)

ptd !

BEGIN
-1 ptd +!
pt4d @ 4 <= ?repeat \ Back to BEGIN if false
111
ptd @ 3 <= ?repeat
222
ptd @ 2 <= ?repeat
333
ptd @ 1 =

UNTIL

; —> 1T

T{ 6 pt5 —> 111 111 222 111 222 333 111 222 333 }T

F.15.6.2.1020 CS-ROLL
T{ : ?DONE (dest —-- orig dest) \ Same as WHILE
POSTPONE IF 1 CS-ROLL
; IMMEDIATE -> }T
T{ : pto6
>R
BEGIN
R@
?DONE
R@
R> 1- >R
REPEAT
R> DROP
;o —> T

T{ 5 pt6 -=> 54 3 2 1 }T

mix_up 2 CS-ROLL ; IMMEDIATE \ cs-rot

pt7 (£3 £2 f1 —— 2)
IF 1111 ROT ROT (-—— 1111 £3 £2) (cs: —— ol)
IF 2222 SWAP (-—— 1111 2222 £3) (cs: —— ol 02)
IF (cs: —— ol 02 03)
3333 mix_up (—— 1111 2222 3333) (cs: —— 02 03 ol)
THEN (cs: —— 02 03)
4444 \ Hence failure of first IF comes here and falls through
THEN (cs: —— 02)
5555 \ Failure of 3rd IF comes here
THEN (cs: —)

334 testsuite

Forth 200x / 18.1

F. Test Suite

6666
T{ -1 -1 -1 pt7 —->
T{ 0 -1 -1 pt7 —>
T{ 0 0 -1 pt7 —>
T{ 0 0 0 pt7 —>
[lcs-roll] 1 CS-ROLL
T{ : pt8
>R
AHEAD 111
BEGIN 222
[lcs—roll]
THEN
333
R> 1- >R
R@ O<
UNTIL
R> DROP
S

\ Failure of 2nd IF comes here

1111 2222 3333
1111 2222 5555
1111 O

0

0

I4

6666
4444

4444 5555 6666 }T

6666

5555 6666

IMMEDIATE

T{ 1 pt8 —-> 333 222 333 }T

F.15.6.2.1908 N>R
: TNR1 N>R SWAP NR> ;
T{ 1 2 10 20 30 3 TNR1 -> 2 1 10 20 30 3 }T

: TNR2 N>R N>R SWAP NR> NR> ;
T{ 1 2 10 20 30 3 40 50 2 TNR2 -> 2 1 10 20 30 3 40 50 2 }T

F.15.6.2.— [:
T{ : gl
T{ : g2
T{ : g3
T{ : g4
T{ : g5 [:
T{ : g6 {:
T{ 1 2 g6

151
[: 2
a :}

a :}

g6 SWAP EXECUTE EXECUTE

|
[:

[:

H
{:

DOES> DROP 4
{:

4

ab

ab

:} b a

;1 5 SWAP

:} b a

3T
}T
}T

gl EXECUTE ->
g2 EXECUTE EXECUTE ->
i1 1 2 3 g3 EXECUTE -> 2

DUP IF DUP 1- RECURSE THEN ;] ; 3 g4 EXECUTE .S —>

32

; CREATE x g5 EXECUTE x —>

;1 a 1+ ; 1 2 g6 SWAP EXECUTE

T{ 1 2 3 g3 SWAP g6t SWAP EXECUTE EXECUTE

F.15.6.2.2533 [THEN]
[IF] 111 [ELSE] 222 [THEN] -> 111
T{ <FALSE> [IF] 111 [ELSE] 222 [THEN] -> 222

T{ <TRUE>

\ Check words are immediate
: tfind BL WORD FIND ;

}T
}T

1
5

x:quotations

1T
2 31T
11T

0 }T
4 }T

[y

}T
}T
}T

R

testsuite

335

F. Test Suite Forth 200x / 18.1

T{ tfind [IF] NIP -> 1 }T
T{ tfind [ELSE] NIP -> 1 }T
T{ tfind [THEN] NIP -> 1 }T

T{ : pt2 [0] [IF] 1111 [ELSE] 2222 [THEN] ; pt2 -> 2222 }T
T{ : pt3 [-1] [IF] 3333 [ELSE] 4444 [THEN] ; pt3 -> 3333 }T

\ Code spread over more than 1 line
T{ <TRUE> [IF] 1
2
[ELSE]
3
4
[THEN] -> 1 2 }T
T{ <FALSE> [IF]

12
[ELSE]
3 4
[THEN] -> 3 4 }T
\ Nested
: <T><TRUE> ;
: <F><FALSE> :
T{ <T> [IF] 1 <T> [IF] 2 [ELSE] 3 [THEN] [ELSE] 4 [THEN] -> 1 2 }T
T{ <F> [IF] 1 <T> [IF] 2 [ELSE] 3 [THEN] [ELSE] 4 [THEN] -> 4 }T
T{ <T> [IF] 1 <F> [IF] 2 [ELSE] 3 [THEN] [ELSE] 4 [THEN] -> 1 3 }T
T{ <F> [IF] 1 <F> [IF] 2 [ELSE] 3 [THEN] [ELSE] 4 [THEN] -> 4 }T

F.16 The optional Search-Order word set

The search order is reset to a known state before the tests can be run.
ONLY FORTH DEFINITIONS

Define two word list (wid) variables used by the tests.

VARIABLE widl
VARIABLE wid2

In order to test the search order it in necessary to remember the existing search order before modifying it.
The existing search order is saved and the get —orderlist defined to access it.

save-orderlist (widn ... widl n —--—)
DUP , 0 ?DO , LOOP

’
CREATE order-1list
T{ GET-ORDER save-orderlist -> }T

get-orderlist (—— widn ... widl n)
order—list DUP @ CELLS (-—— ad n)

336 testsuite

Forth 200x / 18.1 F. Test Suite

OVER + (—— AD AD’)

?D0 I @ -1 CELLS +LOOP (——)
Having obtained a copy of the current wordlist, the testing of the wordlist can begin with test F.16.6.1.1595
FORTH-WORDLIST followed by F.16.6.1.2197 SET-ORDER which also test GET—-ORDER, then
F.16.6.2.0715 ALSO and F.16.6.2.1965 ONLY before moving on to F.16.6.1.2195 SET-CURRENT which
also test GET-CURRENT and WORDLIST. This should be followed by the test
F.16.6.1.1180 DEFINITIONS which also tests PREVIOUS and the F.16.6.1.2192 SEARCH-WORDLIST
and F.16.6.1.1550 F IND tests. Finally the F.16.6.2.1985 ORDER test can be performed.

F.16.6.1.1180 DEFINITIONS

T{ ONLY FORTH DEFINITIONS -> }T
T{ GET-CURRENT -> FORTH-WORDLIST }T

T{ GET-ORDER wid2 @ SWAP 1+ SET-ORDER DEFINITIONS GET-CURRENT
-> wid2 @ }T

T{ GET-ORDER -> get-orderlist wid2 @ SWAP 1+ }T

T{ PREVIOUS GET-ORDER -> get-orderlist }T

T{ DEFINITIONS GET-CURRENT -> FORTH-WORDLIST }T

alsowid2 ALSO GET-ORDER wid2 @ ROT DROP SWAP SET-ORDER ;
alsowid?2

wl 1234 ;
DEFINITIONS : wl -9876 ; IMMEDIATE

ONLY FORTH

T{ wl -> 1234 }T

DEFINITIONS

T{ wl -> 1234 }T

alsowid?2

T{ wl -> -9876 }T

DEFINITIONS T{ wl -> -9876 }T

ONLY FORTH DEFINITIONS
so5 DUP IF SWAP EXECUTE THEN ;

T{ S" wl" widl @ SEARCH-WORDLIST sob5 —-> -1 1234 }T
T{ S" wl" wid2 @ SEARCH-WORDLIST so5 —-> 1 -9876 }T

C"Wl" C" Wl"
T{ alsowid2 c"wl" FIND so5 -> 1 -9876 }T
T{ PREVIOUS c"wl" FIND so5 -> -1 1234 }T

F.16.6.1.1550 FIND
c"dup" C" DUP" ;
c". (" croa("
c"x" C" unknown word" ;

T{ c"dup" FIND -> xt @ -1 }T

testsuite 337

F. Test Suite Forth 200x / 18.1

T{ c".(" FIND -> xti @ 1 }T
T{ c"x" FIND —> c"x" 0 }T

F.16.6.1.1595 FORTH-WORDLIST
T{ FORTH-WORDLIST widl ! -> }T

F.16.6.1.2192 SEARCH-WORDLIST
ONLY FORTH DEFINITIONS

VARIABLE xt " DUP xt !

VARIABLE xti ’ .(xti ! \ Immediate word

T{ S" DUP" widl @ SEARCH-WORDLIST -> xt (@ -1 }T
T{ S" .(" widl @ SEARCH-WORDLIST -> xti @ 1 }T
T{ S" DUP" wid2 @ SEARCH-WORDLIST -> 0 1T

F.16.6.1.2195 SET-CURRENT
T{ GET-CURRENT -> widl @ }T

T{ WORDLIST wid2 ! -> }T
T{ wid2 @ SET-CURRENT -> }T
T{ GET-CURRENT -> wid2 @ }T

T{ widl @ SET-CURRENT -> }T
F.16.6.1.2197 SET-ORDER

T{ GET-ORDER OVER —-> GET-ORDER widl @ }T
T{ GET-ORDER SET-ORDER -—> 1T
T{ GET-ORDER -> get-orderlist }T

T{ get-orderlist DROP get-orderList 2% SET-ORDER -> }T
T{ GET-ORDER -> get-orderlist DROP get-orderList 2% }T
T{ get-orderlist SET-ORDER GET-ORDER -> get-orderlist }T

so2a GET-ORDER get-orderlist SET-ORDER ;
so2 0 SET-ORDER sol2a ;

T{ so2 -> 0 }T \ O SET-ORDER leaves an empty search order

so3 -1 SET-ORDER so2a ;
so4 ONLY so2a ;

T{ so3 -> sod4 }T \ -1SET-ORDER is the same as ONLY

F.16.6.2.0715 ALSO
T{ ALSO GET-ORDER ONLY -> get-orderlist OVER SWAP 1+ }T

F.16.6.2.1965 ONLY
T{ ONLY FORTH GET-ORDER -> get-orderlist }T

sol SET-ORDER ; \ Incase itis unavailable in the forth wordlist

T{ ONLY FORTH-WORDLIST 1 SET-ORDER get-orderlist sol ->
T{ GET-ORDER -> get-orderlist }T

}T

338

testsuite

Forth 200x / 18.1 F. Test Suite

F.16.6.2.1985 ORDER

CR . (ONLY FORTH DEFINITIONS search order and compilation list) CR
T{ ONLY FORTH DEFINITIONS ORDER -> }T
CR .(Plus another unnamed wordlist at head of search order) CR
T{ alsowid?2 DEFINITIONS ORDER -> }T
F.17 The optional String word set
Most of the tests in this wordlist require a known string which is defined as:
T{ : sl S" abcdefghijklmnopgrstuvwxyz" ; -> }T
The tests should be carried out in the order: F.17.6.1.0245 /STRING, F.17.6.1.2191 SEARCH,
F.17.6.1.0170 -TRAILING, F.17.6.1.0935 COMPARE, F.17.6.1.0780 BLANK and
F.17.6.1.2212 SLITERAL.
F.17.6.1.0170 -TRAILING
T{ : s8 S" abc " ; -> }T
T{ : s9 8" ", => T
T{ : sl10 s" a" ; —> T
T{ sl -TRAILING -> sl }T \ “abcdefghijklmnopgrstuvwxyz”
T{ s8 —-TRAILING -> s8 2 - }T \ “abc 7
T{ s7 -TRAILING -> s7 }T \“”
T { s9 -TRAILING -> s9 DROP 0 }T \° ”
T{ s10 -TRAILING -> s10 1- }T \“ a’”
F.17.6.1.0245 /STRING
T{ s1 5 /STRING —-> sl SWAP 5 + SWAP 5 - }T
T{ sl 10 /STRING -4 /STRING -> sl 6 /STRING }T
T{ s1 0 /STRING -> sl }T
F.17.6.1.0780 BLANK
sl13 S" aaaaa a" ; \ Six spaces

T{ PAD 25 CHAR a FILL -> }T
T{ PAD 5 CHARS + 6 BLANK -> }T
T{ PAD 12 s13 COMPARE -> 0 }T

\ Fill PAD with 25 ’a’s
\ Put 6 spaced from character 5
\ PAD Should now be same as s13

F.17.6.1.0935
T{ sl
T{ sl
T{ sl
T{ sl

T{ PAD

T{ sl

T{ PAD

T{ sl
T{ s6

COMPARE
sl
PAD SWAP
PAD OVER
PAD 6
10 sl
PAD O
0 sl
s6
sl

COMPARE
CMOVE

COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE

-> 0 T
-> }T \ Copy sl to PAD
-> 0 }T
> 1 }T
-> -1 }T
-> 1 }T
-> -1 T
-> 1 T
> -1 }T

testsuite

339

F. Test Suite

Forth 200x / 18.1

"abdde"
"abbde"
"abcdf"
"abcdee"

T
T{
T{
T{

sl
sl
sl
sl

sll
sl2

T{ sl1l1 sl12 COMPARE ->

S"
s"
S"
S"

a
a
a
a

"abdde"
"abbde"
"abcdf"
"abcdee"

S"
S"

Oabc"
OaBc"

bdde"
bbde"
bcdf"
bcdee" ;
COMPARE ->
COMPARE —>
COMPARE —>
COMPARE —>
1}

-1 }T
1 }T
-1 }T
1 }T

T

T{ sl12 sl11 COMPARE —-> -1 }T

F.17.6.1.2191 SEARCH

T
T{
T{
T{
T{
T{

T{
T{
T{
T{
T
T{

sl
sl
sl
sl
sl
sl

F.17.6.1.2212

T{

T{ s1 s14 ROT

s2 S" abc" ; —>)T
s3 S" jklmn" ; -> }T
s4 s" z" ; —> T
s5 8" mnogq" ; -> T
s6 S" 12345" ; -> T
s7 s"m " ; —> }T
s2 SEARCH —-> sl <TRU
s3 SEARCH —-> sl 9 /
s4 SEARCH -> sl 25 /
s5 SEARCH -> sl <FAL
s6 SEARCH —-> sl <FAL
s7 SEARCH —-> sl <TRU
SLITERAL

sl4 [sl] SLITERAL ;
T{ sl s14 COMPARE —-> 0 }T

ROT ROT

F.17.6.2.2255 SUBSTITUTE

30 CHARS BUFFER:

subbuff \

\ Define a few string constants

"hi
"wl

"hello"
"world"

n S
d "

"ohim ;
sS" wld"
S" he

S" wo

1llo" ;
rld"

\ Define a few test strings

sub

sub2 S"

sub

1 s

3 s

" Start
Start
" Start

: %hi%, $wld%! :End" ; \ Original string
: hello,world! :End" \ First target string
: world,hello! :End" \ Second target string

E> T
STRING <TRUE>
STRING <TRUE>
SE> }T
SE> }T
E> T

}T
}T

-> 1T

—-> <TRUE> <FALSE> }T

Destination buffer

340

testsuite

Forth 200x / 18.1 F. Test Suite

\ Define the hi and w1d substitutions
T{ "hello" "hi" REPLACES -> }T \ Replace “$hi%” with “hello”
T{ "world" "wld" REPLACES —> 1T \ Replace “$wld%” with “world”

\ “%hi%, $wld%” changedto “hello, world”
T{ subl subbuff 30 SUBSTITUTE ROT ROT sub2 COMPARE -> 2 0 }T

\ Change the hi and wld substitutions
T{ "world"™ "hi" REPLACES -> }T
T{ "hello" "wld" REPLACES -> }T

\ Now “%hi%, $w1ld%” should be changed to “world, hello”
T{ subl subbuff 30 SUBSTITUTE ROT ROT sub3 COMPARE -> 2 0 }T

\ Where the subsitution name is not defined
sub4 S" aaa%bbb%ccc"
T{ sub4 subbuff 30 SUBSTITUTE ROT ROT sub4 COMPARE -> 0 0 }T

\ Finally the % character itself
sub5 S" aaa%%bbb" ;
sub6 S" aaa%bbb"
T{ sub5 subbuff 30 SUBSTITUTE ROT ROT sub6 COMPARE -> 0 0 }T

F.17.6.2.2375 UNESCAPE
Using subbuff, sub5 and sub6 from F.17.6.2.2255 SUBSTITUTE.

T{ sub6 subbuff UNESCAPE sub5 COMPARE -> 0 }T

F.18 The optional Extended Character word set
These test assume the UTF-8 character encoding is being used.

F.18.6.1.2487.15 XC!+?
T{ $ffff PAD 4 XC!+? -> PAD 3 + 1 <TRUE> }T

F.18.6.1.2487.25 XC-SIZE

This test assumes UTF-8 encoding is being used.

HEX
T{ 0 XC-SIZE -> 1 }T
T{ 7f XC-SIZE -> 1 }T
T{ 80 XC—SIZE -> 2 }T
T{ 7ff XC-SIZE -> 2 }T
T{ 800 XC-SIZE -> 3 }T
T{ ffff XC-SIZE -> 3 }T
T{ 10000 XC-SIZE -> 4 }T
T{ 1fffff XC-SIZE -> 4 }T

testsuite 341

F. Test Suite

Forth 200x / 18.1

F.18.6.2.2487.30 XC-WIDTH
T{ $606D XC-WIDTH -> 2 }T
T{ $41 XC-WIDTH -> 1 }T
T{ $2060 XC-WIDTH -> 0 }T

342

testsuite

Forth 200x / 18.1 G. Change Log

Annex G
(informative)
Change Log

16.1 Bath Meeting (30 September — 2 October, 2015)
— 200x Membership:

(1) x:membership: Replaced membership rules.
(2) ed16: Moved Andrew Haley and Willi Stricker from current to past members.
3 Usage requirements:

(1) x:2-complement: Removed “Programs that use flags as arithmetic operands have an environ-
mental dependency.” from 3.1.3.1 Flags.

(2) x:2-complement: Replaced -32767 with -32768 in 3.1.3.2 Integers.

(3) x:2-complement: Removed reference to alternate arithmetic architectures from 3.2.1.1 Internal
number representation.

(4) x:2-complement: Replaced implementation defined response to overflow/underflow of signed
numbers with specific text in 3.2.2.2 Other integer operations.

4 Documentation requirements:

(1) x:2-complement: Removed “values returned after arithmetic overflow” from 4.1.1 Implementation-
defined options.

12 Floating-Point Word Set:
(1) ed16: Replaced OE with —0E in 12.6.2.1489 FATAN2.
A Rationale (Annex A):
(1) x:2-complement: Removed number representations from A.3.1.2 Character types.
(2) ed16: Removed reference to EBCDIC from A.3.1.2 Character types.
(3) x:2-complement: Remove discussion of alternative arithmetic architectures from A.3.2.1 Numbers.
(4) x:2-complement: Revised example in A.3.2.2.2 Other integer operations.
(5) x:2-complement: Replaced environmental dependency example in A.5.2.2 Program labeling.
(6) x:2-complement: Removed reference to two’s-complement from A.6.2.2440 WITHIN.
(7) x:2-complement: Replaced rational for A.8.6.1.1140 D>S.
D Portability guide (Annex D):
(1) x:2-complement: Removed D.3.2 ALU organization.
E Reference Implementations (Annex E):

(1) x:2-complement: Added E.6.2.2440 WITHIN.

changelog 343

G. Change Log Forth 200x / 18.1

(2) x:2-complement: Added E.8.6.1.1140 D>s.
F Test Suite (Annex F):
(1) x:2-complement: Added test case to F.6.1.0290 1 +.
(2) x:2-complement: Added test case to F.6.1.1720 ITNVERT.

17.1 Konstanz Meeting (7-9 September, 2016)
— Title page:

(1) x:reset: Replaced “ANS X3.215-1994” with “the Forth 2012 standard” in document status;

(2) xreset: Renamed “The Standardisation Committee” to “The Forth 200x Standardisation Com-
mittee” in document status.

— Foreword:
(1) x:reset: Revised to refer to Forth 2012 as the starting point for the document;
(2) x:reset: Removed meetings prior to 2015 (Bath) meeting;
(3) ed17: Added 2016 (Konstanz) meeting.
— 200x Membership:
(1) ed17: Added Sergey Baranov;
(2) ed17: Moved Simon Kaphahn from members list to old members list;

(3) ed17: Reinstated Andrew Haley, moving him from the old members list back into the members
list;

(4) ed17: Added officer title against officer holders.
1 Introduction:

(1) ed17: Replaced “2012” with “200x” in title on page 13.

w

Usage requirements:
(1) x:1 chars = 1: Replace “at least one” with “exactly one” in 3.1.2 Character types;

(2) x:2-complement: Replaced “two’s complement” with “two’s-complement” in 3.2.1.1 Internal
number representation;

(3) x:2-complement: Replaced “divisions” with “division” in 3.2.2.2 Other integer operations;
(4) x:2-complement: Removed “in these case” from 3.2.2.2 Other integer operations;

(5) x:2-complement: Added “for operations other than division” to 3.2.2.2 Other integer operations;
(6) x:2-complement: Replaced “2"~!” with “—2"~1” in 3.2.2.2 Other integer operations;
(7) x:reset: Removed “X:wordset-query” from 3.2.7 Obsolescent Environmental Queries;

(8) x:reset: Removed 3.2.8 Extension queries and table 3.7 Forth 200x Extensions.

344 changelog

Forth 200x / 18.1 G. Change Log

6-18 All word sets:
x:reset: Removed proposal labels;

12 Floating-Point Word Set:
(1) x:to-f-round: Removed D>F and S>F conditions from 12.4.1.2 Ambiguous conditions;
(2) x:to-f-round: Revised definition of 12.6.1.1130 D>F;
(3) x:to-f-round: Revised definition of 12.6.2.2175 S>F.

A Rationale (Annex A):
(1) x:2-complement: Made definition of n a clause of previous sentence in A.3.2.1 Numbers;
(2) x:2-complement: Removed “likely” from second paragraph of A.3.2.1 Numbers;
(3) x:2-complement: Removed final paragraph of A.3.2.1 Numbers;
(4) x:2-complement: Remove A.3.2.2.2 Other integer operations;
(5) x:2-complement: Replaced “entitle” with “entitled” in A.5.2.2 Program labeling;
(6) x:2-complement: Replaced “lower” with “lowest” in A.5.2.2 Program labeling;
(7) x:2-complement: Replaced “twos-complement” with “two’s complement” in A.8.6.1.1140 D> S.

E Reference Implementations (Annex E):
(1) x:2-complement: Added E.6.1.1910 NEGATE;
(2) x:2-complement: Corrected “S>D” to “D>S” in E.8.6.1.1140 D>S.

F Test Suite (Annex F):
(1) x:1 chars = 1: Added test case to F.6.1.0897 CHAR+;
(2) x:1 chars = 1: Added test case to F.6.1.0898 CHARS.

H Alphabetic list of words (Annex H):
x:reset: Removed proposal names.

18.1 Bad Voéslau Meeting (6—8 September, 2017)

— Foreword:
(1) ed18: Added 2017 (Bad Voslau) meeting.
— 200x Membership:
(1) ed18: Added Paul E. Bennet as member;
(2) ed18: Moved Howerd Oakford from contributor to member.
3 Usage requirements:
(1) ed18: The Exception word set is no longer optional (3 Usage requirements);

(2) ed18: Moved A.11.3.4 Other transient regions to 3.3.3.4 Text-literal regions;

changelog 345

G. Change Log Forth 200x / 18.1

(3) ed18: Replaced ambiguous condition In 3.4 (d) with exception;

(4) ed18: Replaced ambiguous condition in last sentence of the second paragraph in 3.4.1 with
exception.

4 Documentation requirements:

(1) ed18: Moved 11.4.1.1 Implementation-defined options documentation requirements to 4.1.1
Implementation-defined options.

6 Core Word Set:

(1) x:quotation: Added quotation ambiguous condition to 6.1.0460 ; ;
(2) x:quotation: Added quotation ambiguous condition to 6.1.1250 DOES>;
(3) x:quotation: Added quotation requirement to 6.1.2120 RECURSE;
(4) ed18: Merged 11.6.1.2165 s" with 6.1.2165 S";
(5) ed18 Added cross reference to 6.2.0855 C";
(6) ed18: Merged 11.6.2.2266 S\ " with 6.2.2266 S\ ".

9 Exception Word Set:
(1) ed18: The Exception word set is not longer optional (9 The Exception word set);
(2) ed18: Removed 9.5 Compliance and labeling.

11 File-Access Word Set:
(1) ed18: Merged 11.3.4 Other transient regions with 3.3.3.4 Text-literal regions;
(2) ed18: Removed 11.3.4 Other transient regions related system documentation requirement;
(3) ed18: Removed 11.6.1.2165 s";
(4) ed18: Removed 11.6.2.2266 s\ ".

15 Programming-Tools Word Set:
(1) x:quotations: Added 15.3.2 Colon definition status;
(2) x:quotations: Extended 15.4.1.1 Implementation-defined options;
(3) x:quotations: Added ambiguous condition to 15.6.2.0470 ; CODE;
(4) x:quotations: Added 15.6.2.0 ; 1;
(5) x:quotations: Added 15.6.2.0 [:.

A Rationale (Annex A):
(1) ed18: Added A.3.3.3.4 Text-literal regions;
(2) ed18: Merged A.11.6.1.2165 S" with A.6.1.2165 S";
(3) ed18: Removed A.11.3.4 Other transient regions;

346 changelog

Forth 200x / 18.1

G. Change Log

(4) ed18: Removed A.11.6.1.2165 s";
(5) x:quotations: Added A.15.6.2.0 [:.
E Reference Implementations (Annex E):
(1) ed18: Added E.15.6.2.0 [: and E.15.6.2.0 ;].
F Test Suite (Annex F):
(1) ed18: Moved F.11.6.1.2165 s" to F.6.1.2165 s";
(2) ed18: Added F.15.6.2.0 [:.
H Alphabetic list of words (Annex H):

ed18 Added reference to Rational, Testing and Implementation where available.

changelog

347

edl8

H. Alphabetic list of words

Forth 200x / 18.1

Annex H
(informative)
Alphabetic list of words

In the following list, the last, four-digit, part of the reference number establishes a sequence corresponding
to the alphabetic ordering of all standard words. The first two or three parts indicate the word set and
glossary section in which the word is defined.

At the end of the line, after the page number of the word defintion, are three letters indicating if the word has

a presence in the R (rational), T (testing) and I (implementation) appenices (annex A, F and E respectivly).

6.1.0010 b “Store” .. CORE....44 T
6.1.0030 P “number-sign” CORE....44 T
6.1.0040 #> “number-sign-greater” CORE....44 T
6.1.0050 #S “number-sign-s”........... ... CORE....44 T
6.1.0070 L “ck” L CORE....45RT
6.1.0080 (0 “paren” ... CORE....45RT
11.6.1.0080 (e “paren” FILE...119 T
13.6.1.0086 (LOCAL)coiinnnn. “paren-local-paren” LOCAL...151
6.1.0090 K SStAI” CORE....45 T
6.1.0100 */ “star-slash” CORE....45 T
6.1.0110 */MOD l “star-slash-mod”.................. CORE....45 T
6.1.0120 + “plus” ... CORE....46 T
6.1.0130 +! “plus-store” CORE....46 T
10.6.2.0135 +FIELDccovnvnnn.. “plus-field” FACILITY EXT...107R I
6.1.0140 +LOOPot “plus-loop” CORE....46 RT
18.6.2.0145 +X/STRING “plus-x-string” XCHAREXT...182 1
6.1.0150 S “comma” ... CORE....47RT
6.1.0160 e “minus” ... CORE....47 T
17.6.1.0170 —-TRAILING “dash-trailing” STRING...174 T
18.6.2.0175 —TRAILING-GARBAGE .. “minus-trailing-garbage” ... XCHAR EXT...183 I
6.1.0180 . L “dot” .o CORE....47 T
6.1.0190 e “dot-quote” CORE....47RT
6.2.0200 FO “dot-paren” CORE EXT....74 R
6.2.0210 R “dot-1” ..o COREEXT....74 R
15.6.1.0220 B “Aot-87 Lo TOOLS...159R
6.1.0230 /e “slash” ... ool CORE....47 T
6.1.0240 /MOD ... “slash-mod”...................... CORE....48 T
17.6.1.0245 /STRING “slash-string” STRING...174 RT
6.1.0250 0< e “zero-less” ... CORE....48 T
6.2.0260 0<> . “zero-not-equals”............ CORE EXT....74
6.1.0270 T “zero-equals” CORE....48 T
6.2.0280 0> e “zero-greater” CORE EXT....74
6.1.0290 I+ “one-plus” ..., CORE....48 T
348 alpha

Forth 200x / 18.1

H. Alphabetic list of words

6.1.0300 1- “one-minus” CORE....48 T
6.1.0310 21 e “EWO-STOTE™ .ot CORE....48 T
6.1.0320 2% e “two-star” ... CORE....49 T
6.1.0330 2/ “two-slash” CORE....49 T
6.2.0340 25R i “UWO-tO-1 o CORE EXT....74 R
6.1.0350 2@ “two-fetch” CORE....49 T
8.6.1.0360 2CONSTANT “two-constant” DOUBLE....95RT
6.1.0370 2DROP evvinnnnnnn, “two-drop”. ... CORE....49 T
6.1.0380 2DUP ...t “two-dupe” ... CORE....49 T
8.6.1.0390 2LITERAL “two-literal” DOUBLE....95RT
6.1.0400 20VER oeiiniiiiiinn, IWO-OVeL™ . oot eeeeieeeee CORE....49 T
6.2.0410 2R> “two-r-from”................ COREEXT....75R
6.2.0415 2RE i “two-r-fetch”................ CORE EXT....75
8.6.2.0420 2ROT .ooviiiieiieannn “two-rote” DOUBLEEXT....99 T
6.1.0430 2SWAP oiiiiiiinn UWO-SWAP” + oot e et CORE....49 T
8.6.2.0435 2VALUE c...... “two-value”.............. DOUBLE EXT....99 RTI
8.6.1.0440 2VARIABLE “two-variable” DOUBLE....9 RT
6.1.0450 L “colon” ... CORE....50RT
6.2.0455 NONAME “colon-no-name” CORE EXT....75RT
6.1.0460 2P “semicolon”...................... CORE....50RT
15.6.2.0470 JCODE ovvninnnnnnn. “semicolon-code” TOOLS EXT... 160 R
15.6.2—— 2 “semi-bracket”............. TOOLS EXT... 161 I
6.1.0480 S S “less-than”.............ccovvnnn. CORE....51 T
6.1.0490 <# “less-number-sign” CORE....51 T
6.2.0500 <> e “not-equals” CORE EXT....76
6.1.0530 T e “equals” CORE....51 T
6.1.0540 > e “greater-than”.................... CORE....51 T
6.1.0550 SBODY ..., “to-body” CORE....51RT
12.6.1.0558 SFLOAT ovvvnnnn.. “to-float” FLOATING...132R
6.1.0560 SIN oo 0= CORE....51 T
6.1.0570 >NUMBER “to-number”l CORE....52 T
6.1.0580 SR i 0T e CORE....52 T
15.6.1.0600 2 “question” ...l TOOLS... 159
6.2.0620 PDO e “question-do” CORE EXT....76 RT
6.1.0630 PDUP ..ttt “question-dupe” CORE....52 T
6.1.0650 @ “fetch” CORE....52 T
6.1.0670 BBORT .ottt e CORE....52
9.6.2.0670 N =10) 2 EXCEPTION EXT...104 TI
6.1.0680 ABORT" coovvvnnn.. “abort-quote”l CORE....53R
9.6.2.0680 ABORT" cvvnvvvnnn.. “abort-quote”......... EXCEPTION EXT...104 T
6.1.0690 ABS i “abs” CORE....53 T
6.1.0695 BCCEPT ittt e CORE....53RT
6.2.0698 ACTION=OF ..iittiitien ettt COREEXT....76 TI
6.2.0700 AGAIN ottt it e COREEXT....77R
15.6.2.0702 BHEAD . ..tttitt it is e et TOOLS EXT...161 T
6.1.0705 ALIGN itttttiteti e et e CORE....53RT
alpha 349

Xquotations

H. Alphabetic list of words

Forth 200x / 18.1

6.1.0706 ALIGNED o ..iitttittiit et CORE....54
14.6.1.0707 ALLOCATE ..ititttitt it ittt MEMORY...155 T
6.1.0710 ALLOT ittt e CORE....54 T
16.6.2.0715 ALSO it e SEARCHEXT... 172 TI
6.1.0720 BAND oot e CORE....54 T
15.6.2.0740 ASSEMBLER ...ttt it TOOLS EXT... 161
10.6.1.0742 AT-XY i AKXy FACILITY ... 106
6.1.0750 BASE e e CORE....54 T
6.1.0760 BEGIN ..ttt e e CORE....54 RT
10.6.2.0763 BEGIN-STRUCTURE oiviiininnnnnnnnn.. FACILITY EXT...107R 1
11.6.1.0765 BIN i e FILE...119R
6.1.0770 BL ot o R PP CORE....55RT
17.6.1.0780 BLANK ..ot ttttitttii e et STRING...174 T
7.6.1.0790 BLK ittt “D-l-K” BLOCK....90
7.6.1.0800 BLOCK ottt et e BLOCK....90
7.6.1.0820 BUFFER . ..iiitttittiie ettt e e BLOCK....91
6.2.0825 BUFFER: “buffer-colon”............... CORE EXT....77RTI
15.6.2.0830 BYE i e TOOLS EXT... 162
6.1.0850 Cl “C-StOTE” et CORE....55 T
6.2.0855 C e “c-quote” ... CORE EXT....77RT
6.1.0860 G “c-comma” ... CORE....55 T
6.1.0870 CR it “cfetch”.o i CORE....55 T
6.2.0873 CASE ittt e CORE EXT....78 RT
9.6.1.0875 CATCH ottt e et EXCEPTION...103 TI
6.1.0880 CELL+ ...ovivvinnnennnn.. “cell-plus™ ...t CORE....55RT
6.1.0890 CELLS ottt ettt e e CORE....56RT
10.6.2.0893 CFIELD: “c-field-colon” FACILITY EXT... 108
6.1.0895 CHAR covvniinnnn.. “char”...... ... il CORE....56RT
18.6.2.0895 (00 2 N 2 P XCHAREXT...183R 1
6.1.0897 CHAR+ ...eivvvinnnennnn.. “char-plus” CORE....56 T
6.1.0898 CHARScovvvvnnnn. “chars” il CORE....56 T
11.6.1.0900 CLOSE=FILE ...ttitttitt teitte ettt e et eaeaas FILE... 120
17.6.1.0910 CMOVE cccevvnnn.. “C-move” ... STRING...175 R
17.6.1.0920 CMOVE> c..eo.... “c-move-up” ... STRING...175R
15.6.2.0930 CODE ottt et e TOOLS EXT... 162 R
17.6.1.0935 COMPARE ...ittittiiie et STRING...175 T
6.2.0945 COMPILE, “compile-comma” CORE EXT....78 RT
6.1.0950 CONSTANT . otttitte it ettt aee s CORE....56RT
6.1.0980 (07016 1. CORE....57 T
6.1.0990 CR ottt L CORE....57 T
6.1.1000 (0207 CORE....57TRT
11.6.1.1010 CREATE-FILE tnttntt tntttet et eeeieaeaennennen FILE...120RT
15.6.2.1015 CS-PICK “c-s-pick” ...l TOOLS EXT...162RT
15.6.2.1020 CS-ROLL c..... “c-s-roll” ... TOOLS EXT...162RT
8.6.1.1040 Dt “d-plus”..... ..o DOUBLE....9% T
8.6.1.1050 D= e “d-minus”l DOUBLE....% T
350 alpha

Forth 200x / 18.1

H. Alphabetic list of words

8.6.1.1060 D. “d-dot” ... DOUBLE.... 96 T
8.6.1.1070 D.R ..t “d-dot-r”l DOUBLE.... 96 RT
8.6.1.1075 DO< ... “d-zero-less” ...t DOUBLE....97 T
8.6.1.1080 DO= i “d-zero-equals” DOUBLE....97 T
8.6.1.1090 D2% . “d-two-star” DOUBLE....97 T
8.6.1.1100 D2/ “d-two-slash” DOUBLE....97 T
8.6.1.1110 D< “d-less-than”.................. DOUBLE....97 T
8.6.1.1120 e “dequals”.............ooeinn. DOUBLE....97 T
12.6.1.1130 D>F i “dto-f7 oo FLOATING... 133
8.6.1.1140 D>S “d-to-S” ... DOUBLE....97 RTI
8.6.1.1160 DABS ciiiiiin... “d-abs” DOUBLE.... 98 T
6.1.1170 DECIMAL .ttt ittt CORE....57 T
6.2.1173 DEFER ...ttt et e e COREEXT....78 TI
6.2.1175 DEFER! “defer-store” COREEXT....78 TI
6.2.1177 DEFER@ “defer-fetch”................ COREEXT....79 TI
16.6.1.1180 DEFINITIONS ..ttt ettt SEARCH...170 TI
11.6.1.1190 DELETE-FILE ...ttt ittt it FILE...120 T
6.1.1200 DE P TH .ottt e e CORE....57 T
12.6.2.1203 DFE! ... “d-f-store” FLOATING EXT ... 138
12.6.2.1204 1) “d-f-fetch”............. FLOATING EXT ... 138
12.6.2.1205 DFALIGN “d-f-align”............. FLOATING EXT ... 138
12.6.2.1207 DFALIGNED “d-f-aligned”........... FLOATING EXT ... 138
12.6.2.1207.40 DFFIELD: “d-f-field-colon”. FLOATING EXT ... 139
12.6.2.1208 DFLOAT+ccucvn... “d-float-plus” FLOATING EXT ... 139
12.6.2.1209 DFLOATScccvn... “d-floats” FLOATING EXT ... 139
8.6.1.1210 DMAX ..., “d-max™...................... DOUBLE....98 T
8.6.1.1220 DMINccoveen... “d-min” DOUBLE.... 98 T
8.6.1.1230 DNEGATE “d-megate” DOUBLE.... 98 T
6.1.1240 DO e CORE....58 RT
6.1.1250 DOES>civvvnnnn. “does” .o CORE....58 RT
6.1.1260 DROP it CORE....59 T
8.6.2.1270 DU<S i “d-u-less”................ DOUBLEEXT....99 T
15.6.1.1280 DUMP .ottt e TOOLS ... 159
6.1.1290 DUPttt “dupe” ... CORE....59 T
15.6.2.1300 EDITOR .ottt e ettt TOOLS EXT ... 163
10.6.2.1305 EKEYccviivnnnn.. “e-key”’ ... FACILITY EXT... 108 R
10.6.2.1306 EKEY>CHAR “e-key-to-char”.......... FACILITY EXT... 108 R
10.6.2.1306.40 EKEY>FKEY “e-key-to-f-key”......... FACILITY EXT... 108 RTI
18.6.2.1306.60 EKEY>XCHAR “e-key-to-x-char”.......... XCHAR EXT... 183
10.6.2.1307 EKEY?ovviininnn.. “e-key-question” FACILITY EXT... 109
6.1.1310 ELSE ittt e CORE....59RT
6.1.1320 EM I ot e CORE....59 T
10.6.2.1325 EMIT?coiiiinnnn... “emit-question” FACILITY EXT... 109 R
7.6.2.1330 EMPTY-BUFFERS c. tttttiiiieeeiiieaannns BLOCK EXT....92
10.6.2.1336 END-STRUCTURE ¢iiiiriiiiiiinnnannnn, FACILITY EXT... 109 I
6.2.1342 ENDCASE ovvvnnn “end-case”.................. COREEXT....79RT
alpha 351

H. Alphabetic list of words

Forth 200x / 18.1

6.2.1343 ENDOF ccvvvnnn.. “end-ofl COREEXT....79RT
6.1.1345 ENVIRONMENT? “environment-query”.............. CORE....60RT
6.2.1350 ERASE ..ttt e e CORE EXT....79
6.1.1360 EVALUATEttnttties et eaie e e e eaienneens CORE....60 T
7.6.1.1360 EVALUATE . .tttiiiitttes ittt eiiie et anainaenns BLOCK....91
6.1.1370 EXECUTE o\ttt iie et et ettt CORE....60 T
6.1.1380 2 8 CORE....60RT
12.6.1.1400 Fl “fstore” ... FLOATING... 133
12.6.1.1410 Fd “festar” ..o FLOATING... 133
12.6.2.1415 Fhhk i “f-star-star” FLOATING EXT ... 139
12.6.1.1420 Fd “plus”. .o FLOATING... 133
12.6.1.1425 Fe “eminus” FLOATING... 133
12.6.2.1427 F o “fdot”. ...l FLOATING EXT...139R
12.6.1.1430 F/ o “fslash”l FLOATING... 133
12.6.1.1440 FO< i “f-zero-less-than”............ FLOATING... 133
12.6.1.1450 FO= .. i, “f-zero-equals”.............. FLOATING... 134
12.6.1.1460 F< i “f-less-than” FLOATING... 134
12.6.1.1470 0 “feto-d”. .. FLOATING... 134
12.6.2.1471 F>S i “FtoS”. ...t FLOATING EXT... 140 1
12.6.1.1472 FR ot “ffetch”. ...l FLOATING... 134
12.6.2.1474 FABSccovivvnnnn. “frabs” ... FLOATING EXT... 140
12.6.2.1476 FACOScoivvvvennn.. “f-a-cos”. ...l FLOATING EXT... 140
12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT... 140
12.6.1.1479 FALIGN “fralign”........... ...l FLOATING... 134
12.6.1.1483 FALIGNED “f-aligned”.................. FLOATING... 134
12.6.2.1484 FALOGcvvvvvnnn. “fra-log” ... FLOATING EXT ... 140
6.2.1485 FALSE ..ttt e COREEXT....80 T
12.6.2.1486 FASINccovvnnn.. “fa-sine” FLOATING EXT... 140
12.6.2.1487 FASINH “f-a-cinch”............. FLOATING EXT... 141
12.6.2.1488 FATANccnvn.. “fra-tan”............... FLOATING EXT... 141
12.6.2.1489 FATAN2 “f-a-tan-two”........... FLOATING EXT... 141 RT
12.6.2.1491 FATANH “f-a-tan-h”............. FLOATING EXT... 141
12.6.1.1492 FCONSTANT “f-constant”................. FLOATING...134 R
12.6.2.1493 FCOS ..ot “Acos” i FLOATING EXT ... 141
12.6.2.1494 FCOSHccovvnn... “f-cosh” FLOATING EXT... 141
12.6.1.1497 FDEPTH “fdepth”L. FLOATING... 135
12.6.1.1500 FDROP ccovvnnn. “fedrop” ... FLOATING... 135
12.6.1.1510 FDUPcovvvvnnn.. “fdupe” ... FLOATING... 135
12.6.2.1513 FE. it “fre-dot”............... FLOATING EXT... 142
12.6.2.1515 FEXPiiviiiinnnnnn.. “fe-Xp’.iii FLOATING EXT... 142
12.6.2.1516 FEXPM1 “f-e-x-p-m-one”........ FLOATING EXT... 142 R
12.6.2.1517 FFIELD: “f-field-colon”.......... FLOATING EXT... 142
10.6.2.1518 FIELD:ccovvvvnnn.. “field-colon” FACILITY EXT...110 R
11.6.1.1520 FILE-POSITIONi't tiitiitteiite i it aaieeannens FILE... 120
11.6.1.1522 FILE=SIZE .. .\ttnitttinr ettt it ie et eaieaanens FILE...120 T
11.6.2.1524 FILE=STATUS ...\ttt ttiteeieeaenieenanennnenns FILE EXT... 125
352 alpha

Forth 200x / 18.1

H. Alphabetic list of words

6.1.1540 I At CORE....61 T
6.1.1550 FIND ittt e e CORE....61RT
16.6.1.1550 FIND ittt e SEARCH...170 TI
12.6.1.1552 FLITERAL “fliteral” FLOATING...135R
12.6.2.1553 FLN ..., len” . oo FLOATING EXT ... 142
12.6.2.1554 FLNP1 “f-l-n-p-one”........... FLOATING EXT... 143 R
12.6.1.1555 FLOAT+ c.... “float-plus” FLOATING... 135
12.6.1.1556 FLOAT S ittt ittt e e FLOATING ... 136
12.6.2.1557 FLOGovviiinnnnnn. “flog”. .o FLOATING EXT ... 143
12.6.1.1558 FLOOR ..ottt e FLOATING... 136
7.6.1.1559 FLUSH ittt e e BLOCK....91
11.6.2.1560 FLUSH-FILE ...ttt ittt e FILE EXT ... 125
6.1.1561 FM/MOD “f-m-slash-mod”.................. CORE....61 RT
12.6.1.1562 FMAXoiiiiinnnn... “frmax”. ...l FLOATING... 136
12.6.1.1565 FMINcccvvvennn. “femin” ... FLOATING... 136
12.6.1.1567 FNEGATE “fnegate”. ..., FLOATING ... 136
15.6.2.1580 FORGET .ottt ittt e e TOOLS EXT...163 R
16.6.2.1590 FORTH ..ttt e e SEARCH EXT... 172 I
16.6.1.1595 FORTH-WORDLIST titiiriteeiiieeeaninnnaanns SEARCH...170 T
12.6.1.1600 FOVERccovvvnnn. “frover” ... FLOATING... 136
14.6.1.1605 FREE ...ttt MEMORY...155 T
12.6.1.1610 0270 1 “Arote” ... FLOATING ... 136
12.6.1.1612 FROUND “feround” ...l FLOATING. .. 137
12.6.2.1613 FS. “fes-dot”l FLOATING EXT ... 143
12.6.2.1614 FSIN ...t “fsine”................ FLOATING EXT ... 143
12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT ... 143
12.6.2.1617 FSINHcccoe.... “f-cinch”............... FLOATING EXT... 143
12.6.2.1618 FSORToiiiinnnn... “f-square-root” FLOATING EXT ... 144
12.6.1.1620 FSWAPccco.... “feswap”. .. FLOATING ... 137
12.6.2.1625 FTANccvvvennnn. “ftan”. ... FLOATING EXT ... 144
12.6.2.1626 FTANH “f-tan-h”............... FLOATING EXT... 144
12.6.2.1627 FTRUNC “fetrunc” FLOATING EXT ... 144 TI
12.6.2.1628 FVALUE “f-value”............... FLOATING EXT ... 144 TI
12.6.1.1630 FVARIABLE “f-variable” FLOATING... 137 R
12.6.2.1640 Fv “f-proximate” FLOATING EXT...145R
16.6.1.1643 GET—CURRENT 0ttt ittt it eaniieeanns SEARCH...171
16.6.1.1647 GET—ORDER ...\ttt ettt ettt SEARCH... 171 I
6.1.1650 HERE .t CORE....61 T
6.2.1660 HE X o COREEXT....80 T
6.1.1670 HOLD ittt e CORE....61 T
6.2.1675 HOLD S oottt e COREEXT....80 TI
6.1.1680 B CORE....62 T
6.1.1700 15 CORE....62RT
6.1.1710 IMMEDIATE . .tttttttiit ettt et CORE....62RT
11.6.2.1714 INCLUDE .ttt e et FILE EXT...126 RTI
11.6.1.1717 INCLUDE=FTILEtti tuttnentenenneneenenneneaneanennns FILE... 121 R
alpha 353

H. Alphabetic list of words

Forth 200x / 18.1

11.6.1.1718 INCLUDED .iitttiniteits etiee it eee et aie i aaneans FILE...121 RT
6.1.1720 INVERT o oiiiittiit i ettt e CORE....62RT
6.2.1725 8 COREEXT....80 TI
6.1.1730 T e e CORE....63RT
10.6.2.1740.01 K=ALT-=MASK 00tiirr trteemmieeennnnnnenns FACILITY EXT... 110
10.6.2.1740.02 K—CTRL-MASK c0tin ttiiteaineaneannnanns FACILITY EXT... 110
10.6.2.1740.03 K-DELETE tiittiirr teieenneanneanneennn, FACILITY EXT... 110
10.6.2.1740.04 K=DOWN otirrtiiitnr ttemieaineeneennenns FACILITY EXT... 111
10.6.2.1740.05 K=END 0ttiuttrmntenns ttemieaaeaneenneenns FACILITY EXT... 111
10.6.2.1740.06 K=F1cccevvunnn. KA1 FACILITY EXT... 111
10.6.2.1740.07 K-F10 “hk-£-107 FACILITY EXT... 111
10.6.2.1740.08 K-F11 A1 FACILITY EXT... 111
10.6.2.1740.09 K-F12 RA-127 FACILITY EXT... 112
10.6.2.1740.10 K-F2cccuvnnn. kA2 FACILITY EXT... 112
10.6.2.1740.11 K-F3cccvvnennn. R£3 FACILITY EXT... 112
10.6.2.1740.12 K-F4cccooun... R4 FACILITY EXT ... 112
10.6.2.1740.13 K-F5ccoeiinnnnn. B S s FACILITY EXT... 112
10.6.2.1740.14 K-F6cvvvvvnunnn. R0 FACILITY EXT... 113
10.6.2.1740.15 R=F7ccoviiiinnnnnn. R FACILITY EXT... 113
10.6.2.1740.16 K-=F8cevvurnnn. R8T FACILITY EXT... 113
10.6.2.1740.17 K=F9cciiverinnnn. RAE-9” FACILITY EXT... 113
10.6.2.1740.18 K—HOME oiuittiittes tteeite i i FACILITY EXT... 113
10.6.2.1740.19 K—INSERTiiiitinnr teitenineanneanneenns, FACILITY EXT... 114
10.6.2.1740.20 K=LEFT ...uutttrtennres teemiteanneanneennnenns FACILITY EXT... 114
10.6.2.1740.21 K=NEXT ..tutttitterites ttemieeaeeneenneenns FACILITY EXT... 114
10.6.2.1740.22 K=PRIOR ttiiiiiirns teeeiiiee it FACILITY EXT... 114
10.6.2.1740.23 K—RIGHTiitiiiitiin ittt FACILITY EXT ... 114
10.6.2.1740.24 K—SHIFT-MASKc.. ttiiriiiieannnannnanns FACILITY EXT... 115
10.6.2.1740.25 K=UP ...\ttt e et ei i FACILITY EXT... 115
6.1.1750 KEY ot e CORE....63R
10.6.1.1755 KEY? ..., “key-question” FACILITY ... 107 R
6.1.1760 LEAVE ottt e e CORE....63RT
7.6.2.1770 LIS ittt e e BLOCK EXT....92
6.1.1780 LITERAL otittttitteiins et eee et e i e CORE....63RT
7.6.1.1790 700 N 5 BLOCK....91
13.6.2.1795 LOCALS| cevvvvnnnnnn.. “locals-bar” LOCALEXT...152 1
6.1.1800 LOOP ittt e CORE....64 RT
6.1.1805 LSHIFTccvo.... “l-shift” ... CORE....64 T
6.1.1810 Mx “M-Star” e CORE....64RT
8.6.1.1820 Mx/ . “m-star-slash™................. DOUBLE....98 RT
8.6.1.1830 M+ “m-plus” ... DOUBLE....98 RT
6.2.1850 MARKER . .ittiitttiene ettt e e e CORE EXT....81 R
6.1.1870 72 CORE....64 T
6.1.1880 MIN i CORE....64 T
6.1.1890 MOD i e CORE....65 T
6.1.1900 MOVE ittt e e CORE....65RT
354 alpha

Forth 200x / 18.1 H. Alphabetic list of words

10.6.2.1905 M e FACILITY EXT...115R
15.6.2.1908 N>R i, RO TOOLS EXT ... 163 RTI
15.6.2.1909.10 NAME>COMPILE “name-to-compile” TOOLS EXT...163 R
15.6.2.1909.20 NAME>INTERPRET “name-to-interpret”......... TOOLS EXT ... 164
15.6.2.1909.40 NAME>STRING “name-to-string” TOOLS EXT... 164
6.1.1910 NEGATE ..ottt ettt e e CORE....65 TI
6.2.1930 15 CORE EXT.... 81
15.6.2.1940 NR> ... “nr-from” ..o TOOLS EXT...164 1
6.2.1950) COREEXT....81 RT
16.6.2.1965 ONLY ottt e SEARCHEXT...172 TI
11.6.1.1970 OPEN-FILE ...ttt ottt e eae e FILE...122R
6.1.1980 OR i e CORE....65 T
16.6.2.1985 (03 23 1) 2 2 SEARCHEXT...172 T
6.1.1990 OVER o ittittttit ettt et e CORE....65 T
6.2.2000 PAD ittt e COREEXT....81 R
10.6.1.2005 PAGE i e FACILITY ... 107
6.2.2008 PARSE ..ittittittiit it e COREEXT....82R
18.6.2.2008 PARSE ..ittittittit s e XCHAR EXT... 183
6.2.2020 PARSE-NAME ooiit thtiitnienieneneniennenn, COREEXT....82 TI
6.2.2030 PICK ittt e CORE EXT....82R
6.1.2033 POSTPONE .. .\ttttties ettt e aeens CORE....66 RT
12.6.2.2035 PRECISTION otitiiiint teieieaeaeanennns FLOATING EXT... 145
16.6.2.2037 PREVIOUS iiiiiitiits i SEARCHEXT... 172 1
6.1.2050 QUI T ittt e e CORE....066 1
11.6.1.2054 R/O i 07 FILE...122
11.6.1.2056 R/W i W FILE...122
6.1.2060 R> it “r-from” ... CORE....66 T
6.1.2070 RE oo “r-fetch” CORE....66 T
11.6.1.2080 READ=FILE itttnttnt ttttet et aeaaes FILE...122R
11.6.1.2090 READ-LINEittnitint ettt aeaeaes FILE... 123 RT
6.1.2120 RECURSE . ..tnitittittite teit e e CORE....67RT
6.2.2125 22 1 P COREEXT....82R
7.6.2.2125 221 P BLOCK EXT....92
11.6.2.2125 20 7 PP FILE EXT... 126
11.6.2.2130 RENAME-FILE cuittitt ittnttnienenentennennennen FILEEXT...126 T
6.1.2140 REPEAT ..iitiittttitet ttent e CORE....67RT
17.6.2.2141 REPLACES .. .itiitttiies ittt STRING EXT... 176 1
11.6.1.2142 REPOSITION-FILE t.oittintintaitaeaeaneaneanennn, FILE...123 T
12.6.1.2143 REPRESENT ...ttt tttitei i aaeane, FLOATING...137R
11.6.2.2144.10 REQUIREutniutittnit itteeaeaaeaeneaennn FILE EXT... 126 RTI
11.6.2.2144.50 REQUIRED tutiniinie cittmenenenenennennennen FILE EXT... 126 RTI
14.6.1.2145 RESIZE . ..tiitttiteeit ettt et MEMORY...155 T
11.6.1.2147 RESIZE=FILE ...ttt tntetetait et aeaeanenns FILE...123 T
6.2.2148 RESTORE—INPUT teiittiriiitanennannannann. CORE EXT....83
6.2.2150 210) 7 COREEXT....83R
6.1.2160 ROT .ottt IOt ot CORE....67 T

alpha 355

H. Alphabetic list of words

Forth 200x / 18.1

6.1.2162 RSHIFT “r-shift” ..o CORE....67 T
11.6.1.2165 S “S-qUOLE” L FILE...124 RT
6.1.2165 S e “S-qUOLE” L CORE....68 RT
6.1.2170 S>D i “sto-d” L CORE....68 T
12.6.2.2175 S>F “s-to-f7 L FLOATING EXT...145 1
7.6.1.2180 SAVE-BUFFERS iitt ittnteiteiei i aaeanans BLOCK....92
6.2.2182 SAVE=INPUT ...ttt ittt COREEXT....84RT
7.6.2.2190 SCR ittt G BLOCK EXT....93R
17.6.1.2191 SEARCH ...ttt e e STRING...175 T
16.6.1.2192 SEARCH-WORDLIST tiuuieininnmneanneannnennnn. SEARCH...171 RT
15.6.1.2194 =3] TOOLS ... 160 R
16.6.1.2195 SET—CURRENT ioiit tttntaieieaaaaaaaeane, SEARCH...171 T
16.6.1.2197 SET—=ORDER tittiitt ettt SEARCH...171 TI
12.6.2.2200 SET-PRECISIONe'verernnnnnnnnnnnnnns FLOATING EXT... 145
12.6.2.2202 SF! “s-f-store” FLOATING EXT... 145
12.6.2.2203 =3 “s-f-fetch” FLOATING EXT... 146
12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT... 146
12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT... 146
12.6.2.2206.40 SFFIELD: “s-f-field-colon”........ FLOATING EXT... 146
12.6.2.2207 SFLOAT+ “s-float-plus”........... FLOATING EXT... 147
12.6.2.2208 SFLOATS c...... “s-floats” FLOATING EXT... 147
6.1.2210 SIGN ottt e CORE....68 T
17.6.1.2212 SLITERAL . .ottttitent ttee et e e eaeenes STRING...175RT
6.1.2214 SM/REM “s-m-slash-rem”.................. CORE....68 RT
6.1.2216 SOURCE o ttittittittees ettt CORE....609RT
6.2.2218 SOURCE-ID “source-i-d”................. CORE EXT.... 84
11.6.1.2218 SOURCE-ID “source-i-d” FILE...124 T
6.1.2220 SPACE e e CORE....69 T
6.1.2230 SPACES ottt e CORE....609 T
6.1.2250 ST ATE ittt e e CORE....69RT
15.6.2.2250 STATE ittt ittt e TOOLS EXT ... 164
17.6.2.2255 SUBSTITUTE .itiittiins ettt eieaenns STRING EXT...176 RTI
6.1.2260 S AP e e CORE....69 T
15.6.2.2264 SYNONYM ..ttt e aieaens TOOLS EXT...165 1
11.6.2.2266 S\ “s-backslash-quote”........... FILE EXT... 127
6.2.2266 S\" “s-backslash-quote”.......... CORE EXT....83
6.1.2270 THEN ottt ittt et et s CORE....70RT
9.6.1.2275 1921210) EXCEPTION... 103 RTI
7.6.2.2280 THRU oottt it e BLOCK EXT....93
10.6.2.2292 TIMESDATE “time-and-date” FACILITY EXT...115R
6.2.2295 4 CORE EXT....84 RT
15.6.2.2297 TRAVERSE-WORDLISTcoovvinirnnnnnnnnnnnn. TOOLS EXT...165R
6.2.2298 10210 T COREEXT....85RT
6.2.2300 TUCK ottt ittt et e CORE EXT....85
6.1.2310 14 = - CORE....70 T
6.1.2320 U, e “u-dot” L CORE....70 T
356 alpha

Forth 200x / 18.1

H. Alphabetic list of words

6.2.2330 U.R ittt “a-dot-r”. ... COREEXT....85
6.1.2340 U< o “u-less-than™..................... CORE....70 T
6.2.2350 U> e “u-greater-than” CORE EXT....85
6.1.2360 UM* i “U-m-star” ... CORE....70 T
6.1.2370 UM/MOD c.c.c.... “u-m-slash-mod” CORE....71 T
17.6.2.2375 UNESCAPE ...ttt it STRING EXT... 177 TI
6.1.2380 UNLOOP oottt ettt e s CORE....71RT
6.1.2390 UNT I oottt e ettt e e CORE....71RT
6.2.2395 18716555] 0 CORE EXT....85
7.6.1.2400 UPDATE ottt BLOCK....92
6.2.2405 VALUE it COREEXT....86RT
6.1.2410 VARIABLE ...ttt ittt e CORE....71RT
11.6.1.2425 W/O =07 FILE... 124
6.1.2430 WHILE ottt it et e e CORE....72RT
6.2.2440 WITHIN ittt ettt et COREEXT....86R 1
6.1.2450 WORD ittt e CORE....72RT
16.6.1.2460 WORD LIS T ottt e e SEARCH...171
15.6.1.2465 WORD S ittt TOOLS...160 R
11.6.1.2480 WRITE-FILE ...ttt ittt ettt iiiee e FILE... 125
11.6.1.2485 WRITE-LINE ...ttt ittt i aiieeannns FILE...125 T
18.6.1.2486.50 X—=SIZEttt XCHAR ... 181 I
18.6.2.2486.70 X—WIDTH ...ttt i XCHAR EXT... 183 I
18.6.1.2487.10 XC'+ “x-c-store-plus” XCHAR... 181 I
18.6.1.2487.15 XC!'+?, “x-c-store-plus-query” XCHAR...181 TI
18.6.1.2487.20 XC,iiiiiiiiiiiia. “X-c-comma”. ... XCHAR... 181 I
18.6.1.2487.25 XC-SIZE “X-C-SizZe€” ... XCHAR... 181 TI
18.6.2.2487.30 XC-WIDTH “x-c-width” XCHAREXT... 184 TI
18.6.1.2487.35 XCR+oviiriiiiiinn... “x-c-fetch-plus” XCHAR...182 I
18.6.1.2487.40 XCHAR+ “x-char-plus”................... XCHAR... 182 I
18.6.2.2487.45 XCHAR-cco.... “x-char-minus”............ XCHAR EXT... 184 I
18.6.1.2488.10 XEMIT “X-emit” L. XCHAR... 182 1
18.6.2.2488.20 XHOLDccun... “x-hold” XCHAR EXT... 184 1
18.6.1.2488.30 XKEY ccunn... “X-Key” XCHAR... 182 I
18.6.1.2488.35 XKEY?ccuv... “x-key-query” XCHAR... 182
6.1.2490 b (0) > S Km0 CORE....72 T
18.6.2.2495 X\STRING- “x-string-minus”........... XCHAREXT... 184 1
6.1.2500 [“left-bracket” CORE....72RT
6.1.2510 A “bracket-tick” CORE....73RT
15.6.2— “bracket-colon” TOOLS EXT ... 165 RTI ~quommon
6.1.2520 [CHAR]ccnn.. “bracket-char”.................... CORE....73RT
18.6.2.2520 [CHAR]c...... “bracket-char”............. XCHAR EXT... 184 I
6.2.2530 [COMPILE] “bracket-compile” COREEXT....86RT
15.6.2.2530.30 [DEFINED] “bracket-defined”........... TOOLS EXT ... 166 1
15.6.2.2531 [ELSE] ...t “bracket-else”.............. TOOLS EXT... 166 R 1
15.6.2.2532 [IF] i, “bracket-if”................ TOOLS EXT... 166 R 1
15.6.2.2533 [THEN]c...... “bracket-then” TOOLS EXT ... 167 RTI
alpha 357

H. Alphabetic list of words Forth 200x / 18.1

15.6.2.2534 [UNDEFINED] “bracket-undefined” TOOLS EXT... 167 1
6.2.2535 N “backslash”................. COREEXT....87R
7.6.2.2535 N “backslash” BLOCK EXT....93
6.1.2540 1 “right-bracket” CORE....73RT
13.6.2.2550 (e “brace-colon”.............. LOCALEXT...152R 1

358 alpha

	Contents
	Foreword
	Proposals Process
	200x Membership

	Introduction
	Purpose
	Scope
	Document organization
	Future directions

	Terms, notation, and references
	Definitions of terms
	Notation
	References

	Usage requirements
	Data types
	The implementation environment
	The Forth dictionary
	The Forth text interpreter

	Documentation requirements
	System documentation
	Program documentation

	Compliance and labeling
	Forth-2012 systems
	Forth-2012 programs

	Glossary
	Core words
	Core extension words

	The optional Block word set
	Introduction
	Additional terms
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Double-Number word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The Exception word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Facility word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional File-Access word set
	Introduction
	Additional terms
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Floating-Point word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Locals word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Memory-Allocation word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Programming-Tools word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Search-Order word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional String word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Extended-Character word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	Rationale
	Introduction
	Terms and notation
	Usage requirements
	Documentation requirements
	Compliance and labeling
	Glossary
	The optional Block word set
	The optional Double-Number word set
	The optional Exception word set
	The optional Facility word set
	The optional File-Access word set
	The optional Floating-Point word set
	The optional Locals word set
	The optional Memory-Allocation word set
	The optional Programming-Tools word set
	The optional Search-Order word set
	The optional String word set
	The optional Extended-Character word set

	Bibliography
	Compatibility analysis
	FIG Forth (circa 1978)
	Forth 79
	Forth 83
	ANS Forth (1994)
	ISO Forth (1997)
	Approach of this standard
	Differences from Forth 94
	Additional words

	Portability guide
	Introduction
	Hardware peculiarities
	Number representation
	Forth system implementation
	Summary

	Reference Implementations
	Introduction
	The Core word set
	The optional Double-Number word set
	The optional Exception word set
	The optional Facility word set
	The optional File-Access word set
	The optional Floating-Point word set
	The optional Locals word set
	The optional Programming-Tools word set
	The optional Search-Order word set
	The optional String word set
	The optional Extended-Character word set

	Test Suite
	Introduction
	Test Harness
	Core Tests
	The Core word set
	The optional Double-Number word set
	The optional Exception word set
	The optional Facility word set
	The optional File-Access word set
	The optional Floating-Point word set
	The optional Memory-Allocation word set
	The optional Programming-Tools word set
	The optional Search-Order word set
	The optional String word set
	The optional Extended Character word set

	Change Log
	16.1 Bath Meeting
	17.1 Konstanz Meeting
	18.1 Bad Vöslau Meeting

	Alphabetic list of words

